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» Optimal 1/e-competitive threshold algorithm for k = 1 e
All based on maximization

) (1 — 0 (1/\/%) ) - competitive algorithm for general k objectives

* Matroid secretary (above: k-uniform matroid)

* Knapsack secretary problems All require beyond-worst-

* Prophet inequality problems

case approach to learn

* Secretary with advice :
scale of secretarv gualit

» Prediction on secretary quality

> Alternatives to random order: e.g., sample of secretaries
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* Candidates arrive online

* [rrevocably accept or reject upon arrival

* Choose no less than & candidates

* x; = cost of candidate i

* Objective: minimize aggregate cost
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- Public University is a minimization problem

- Cannot simply reject secretaries

»Must hire at least & secretaries
»Could be forced to incur enormous cost

-RAND / maximization: ignore cases where low-
value secretaries hired
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Learning-augmented approach:

Online algorithm given “budget” B a priori
B upper bound on OPT (cost of k cheapest secretaries)
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Upper Bound of O(B - log k): Lower Bound of (B - log k):
v Even with adversarial ordering vV Even with random ordering
vV Simple deterministic algorithm vV Against randomized algorithms

%

Cautious” Algorithm Key step: (roughly) any competitive

algorithm must hire each candidate
hired by the cautious algorithm

(Roughly) hire candidate i iff they are in

“best” solution up until now
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Acceptance Property: with probability 1, hire s(i) candidates among

first i candidates, for all i

Lemma: Every randomized algorithm that is competitive in
adversarial order model has the acceptance property.
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Acceptance Property: with probability 1, hire s(7) candidates among

first i candidates, for all

Lemma: Every randomized algorithm that is competitive in
random order model has the acceptance property.
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Idea: construct instance such that a random log k batches
permutation “looks like” adversarial instance with



Very similar to online Steiner tree

opt opt

Opt Opt Opt Opt
4 4 4 4

construct instance such that a random log k batches
permutation “looks like” adversarial instance with
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> Assume 7 is known AND random order arrivals

» Optimal 1/e-competitive threshold algorithm for k = 1

) (1 — 0 (1/\/%) ) - competitive algorithm for general k Minimization varants

* Matroid secretary (above: k-uniform matroid)

* Knapsack secretary problems Other leaming—augmented

* Prophet inequality problems approaches

* Secretary with advice
» Prediction on secretary quality

> Alternatives to random order: e.g., sample of secretaries
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