

The Public University Secretary Problem

Heather Newman (Carnegie Mellon) **SOSA 2024**

Joint work with: Benjamin Moseley (Carnegie Mellon) and Kirk Pruhs (U. of Pittsburgh)

• Candidates arrive online

- Candidates arrive online
- Irrevocably accept or reject upon arrival

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose **at most** *k* candidates

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose **at most** *k* candidates
- x_i = **quality** of candidate *i*

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose **at most** *k* candidates
- x_i = **quality** of candidate *i*
- <u>Objective</u>: maximize aggregate quality

- Choose **at most** *k* candidates
- x_i = quality of candidate *i*
- <u>Objective</u>: maximize aggregate quality

- Choose at most k candidates
- x_i = quality of candidate *i*
- <u>Objective</u>: maximize aggregate quality

Public University Secretary Problem

•			
•			
•			
•			
•			
•			
•			
•			
-			

Candidates arrive online

Irrevocably accept or reject upon arrival

- Choose at most k candidates
- x_i = **quality** of candidate *i*
- <u>Objective</u>: maximize aggregate quality

Candidates arrive online

Irrevocably accept or reject upon arrival

- Choose at most k candidates
- x_i = **quality** of candidate *i*
- <u>Objective</u>: maximize aggregate quality

• Choose no less than k candidates

Candidates arrive online

- Choose at most k candidates
- x_i = quality of candidate *i*
- <u>Objective</u>: maximize aggregate quality

Irrevocably accept or reject upon arrival

• Choose **no less than** *k* candidates

• $x_i = \text{cost}$ of candidate *i*

Candidates arrive online

- Choose at most k candidates
- x_i = quality of candidate *i*
- **Objective:** maximize aggregate quality

Irrevocably accept or reject upon arrival

- Choose **no less than** *k* candidates
- $x_i = \text{cost}$ of candidate *i*
- <u>Objective</u>: minimize aggregate cost

• Most classic setting: *n* candidates, maximize expected aggregate value

- Most classic setting: *n* candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals

- Most classic setting: *n* candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals
 - Optimal 1/e-competitive threshold algorithm for k = 1

- Most classic setting: *n* candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals
 - Optimal 1/e-competitive threshold algorithm for k = 1
 - $\left(1 O\left(1/\sqrt{k}\right)\right)$ competitive algorithm for general k

- Most classic setting: *n* candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals
 - Optimal 1/e-competitive threshold algorithm for k = 1• $\left(1 - O\left(1/\sqrt{k}\right)\right)$ - competitive algorithm for general k
- Matroid secretary (above: *k*-uniform matroid)

- Most classic setting: *n* candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals
 - Optimal 1/e-competitive threshold algorithm for k = 1• $\left(1 - O\left(1/\sqrt{k}\right)\right)$ - competitive algorithm for general k
- Matroid secretary (above: *k*-uniform matroid)
- Knapsack secretary problems

- Most classic setting: *n* candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals
 - Optimal 1/e-competitive threshold algorithm for k = 1• $\left(1 - O\left(1/\sqrt{k}\right)\right)$ - competitive algorithm for general k
- Matroid secretary (above: *k*-uniform matroid)
- Knapsack secretary problems
- Prophet inequality problems

- Most classic setting: *n* candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals
 - Optimal 1/e-competitive threshold algorithm for k = 1• $\left(1 - O\left(1/\sqrt{k}\right)\right)$ - competitive algorithm for general k
- Matroid secretary (above: *k*-uniform matroid)
- Knapsack secretary problems
- Prophet inequality problems
- Secretary with advice

- Most classic setting: *n* candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals
 - Optimal 1/e-competitive threshold algorithm for k = 1• $\left(1 - O\left(1/\sqrt{k}\right)\right)$ - competitive algorithm for general k
- Matroid secretary (above: *k*-uniform matroid)
- Knapsack secretary problems
- Prophet inequality problems
- Secretary with advice
 - Prediction on secretary quality

- Most classic setting: *n* candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals
 - Optimal 1/e-competitive threshold algorithm for k = 1• $\left(1 - O\left(1/\sqrt{k}\right)\right)$ - competitive algorithm for general k
- Matroid secretary (above: *k*-uniform matroid)
- Knapsack secretary problems
- Prophet inequality problems
- Secretary with advice
 - Prediction on secretary quality
 - Alternatives to random order: e.g., sample of secretaries

- Most classic setting: *n* candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals
 - Optimal 1/e-competitive threshold algorithm for k = 1• $\left(1 - O\left(1/\sqrt{k}\right)\right)$ - competitive algorithm for general k
- Matroid secretary (above: *k*-uniform matroid)
- Knapsack secretary problems
- Prophet inequality problems
- Secretary with advice
 - Prediction on secretary quality
 - Alternatives to random order: e.g., sample of secretaries

All based on maximization objectives

- Most classic setting: *n* candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals
 - Optimal 1/e-competitive threshold algorithm for k = 1• $\left(1 - O\left(1/\sqrt{k}\right)\right)$ - competitive algorithm for general k
- Matroid secretary (above: *k*-uniform matroid)
- Knapsack secretary problems
- Prophet inequality problems
- Secretary with advice
 - Prediction on secretary quality
 - Alternatives to random order: e.g., sample of secretaries

All based on maximization objectives

All require beyond-worstcase approach to <u>learn</u> scale of secretary quality

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose **at most** *k* candidates
- x_i = **quality** of candidate *i*
- <u>Objective</u>: maximize expected aggregate quality

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose at most k candidates
- x_i = **quality** of candidate *i*
- <u>Objective</u>: maximize expected aggregate quality

Random Order Arrivals

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose **at most** *k* candidates
- x_i = **quality** of candidate *i*
- <u>Objective</u>: maximize expected aggregate quality

Random Order Arrivals

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose **at most** *k* candidates
- x_i = **quality** of candidate *i*
- <u>Objective</u>: maximize expected aggregate quality

Random Order Arrivals

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose at most k candidates
- x_i = **quality** of candidate *i*
- <u>Objective</u>: maximize expected aggregate quality

Set threshold (price)

Random Order Arrivals

Know *n*

fraction

exceed threshold

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose at most k candidates
- x_i = **quality** of candidate *i*
- <u>Objective</u>: maximize expected aggregate quality

Set threshold (price)

Random Order Arrivals

Know *n*
Sample-and-price for RAND

fraction

exceed threshold

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose at most k candidates
- x_i = **quality** of candidate *i*
- <u>Objective</u>: maximize expected aggregate quality

Set threshold (price)

Random Order Arrivals

Know *n*

Sample-and-price for RAND

Sample first 1/e fraction Choose first to exceed threshold

Upshot: only need to select most valuable candidate with some (constant) probability

Sample-and-price for RAND

Sample first 1/e fraction Choose first to exceed threshold

Upshot: only need to select most valuable candidate with some (constant) probability

Learn **scale** of quality in applicant pool

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose **no less than** *k* candidates
- $x_i = \text{cost}$ of candidate *i*
- <u>Objective</u>: minimize aggregate cost

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose **no less than** *k* candidates
- $x_i = \text{cost}$ of candidate *i*
- <u>Objective</u>: minimize aggregate cost

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose **no less than** *k* candidates
- $x_i = \text{cost}$ of candidate *i*
- <u>Objective</u>: minimize aggregate cost

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose **no less than** *k* candidates
- $x_i = \text{cost}$ of candidate *i*
- <u>Objective</u>: minimize aggregate cost

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose **no less than** *k* candidates
- $x_i = \text{cost}$ of candidate *i*
- <u>Objective</u>: minimize aggregate cost

$N \gg 1$ unbounded competitiveness!

- Candidates arrive online
- Irrevocably accept or reject upon arrival
- Choose **no less than** k candidates
- $x_i = \text{cost}$ of candidate *i*
- <u>Objective</u>: minimize aggregate cost

$N \gg 1$ unbounded competitiveness!

$N \gg 1$ unbounded competitiveness!

$N \gg 1$ unbounded competitiveness!

$N \gg 1$ unbounded competitiveness!

2

Why is random order not sufficient?

Public University is a minimization problem

$N \gg 1$ unbounded competitiveness!

- Public University is a minimization problem
- Cannot simply reject secretaries

$N \gg 1$ unbounded competitiveness!

- Public University is a minimization problem
- Cannot simply reject secretaries
 - Must hire at least k secretaries

$N \gg 1$ unbounded competitiveness!

- Public University is a minimization problem
- Cannot simply reject secretaries
 - Must hire at least k secretaries •Could be forced to incur enormous cost

$N \gg 1$ unbounded competitiveness!

- Public University is a minimization problem
- Cannot simply reject secretaries
 - Must hire at least k secretaries
 - Could be forced to incur enormous cost
- RAND / maximization: ignore cases where lowvalue secretaries hired

How do we break through the strong lower bound?

How do we break through the strong lower bound?

Learning-augmented approach:

How do we break through the strong lower bound?

Learning-augmented approach:

Online algorithm given "budget" *B* a priori B upper bound on OPT (cost of k cheapest secretaries)

Upper Bound of $O(B \cdot \log k)$:

Upper Bound of $O(B \cdot \log k)$: \checkmark Even with **adversarial** ordering

Best possible online algorithm for Public University Secretary $\Theta(\log k)$ -competitive against B in both adversarial and random arrival orders

Best possible online algorithm for Public University Secretary $\Theta(\log k)$ -competitive against B in both adversarial and random arrival orders

Lower Bound of $\Omega(B \cdot \log k)$:

Best possible online algorithm for Public University Secretary $\Theta(\log k)$ -competitive against B in both adversarial and random arrival orders

Lower Bound of $\Omega(B \cdot \log k)$: Even with random ordering

Upper Bound of $O(B \cdot \log k)$: Even with adversarial ordering ✓ Simple **deterministic** algorithm

Lower Bound of $\Omega(B \cdot \log k)$: Even with random ordering Against randomized algorithms

Upper Bound of $O(B \cdot \log k)$: Even with adversarial ordering ✓ Simple **deterministic** algorithm

Key Takeaway: randomization of negligible benefit!

Lower Bound of $\Omega(B \cdot \log k)$: Even with random ordering Against randomized algorithms

Lower Bound of $\Omega(B \cdot \log k)$: ✓ Even with **random** ordering ✓ Against **randomized** algorithms

Lower Bound of $\Omega(B \cdot \log k)$: Even with random ordering ✓ Against **randomized** algorithms

Upper Bound of $O(B \cdot \log k)$: Even with adversarial ordering ✓ Simple **deterministic** algorithm "Cautious" Algorithm (Roughly) hire candidate i iff they are in

"best" solution up until now

Lower Bound of $\Omega(B \cdot \log k)$: Even with random ordering ✓ Against **randomized** algorithms

Upper Bound of $O(B \cdot \log k)$: Even with adversarial ordering ✓ Simple **deterministic** algorithm "Cautious" Algorithm (Roughly) hire candidate i iff they are in

"best" solution up until now

Lower Bound of $\Omega(B \cdot \log k)$: Even with random ordering ✓ Against **randomized** algorithms

Key step: (roughly) any competitive algorithm must hire each candidate hired by the cautious algorithm

Lower Bound: Adversarial Order

First *i* candidates: (adversarial) arrival order

Lower Bound: Adversarial Order

 $\leq B$

First *i* candidates: sorted

 $\leq B$

 $\leq B$

Acceptance Property: with probability 1, hire s(i) candidates among first *i* candidates, for all *i*

Acceptance Property: with probability 1, hire s(i) candidates among first *i* candidates, for all *i*

Lemma: Every <u>randomized</u> algorithm that is competitive in <u>adversarial</u> order model has the <u>acceptance property</u>.

Idea: high cost secretaries arrive first

Batch *i*: 2^{i} candidates, $ach w/ cost \frac{opt}{2^{i}}$

opt		
opt 2	opt 2	
opt 4	opt 4	opt 4

Batch *i*: 2^{i} candidates, each w/ cost $\frac{opt}{2^{i}}$

Batch *i*: 2^{i} candidates, each w/ cost $\frac{opt}{2^{i}}$

Idea: high cost secretaries arrive first

Batch *i*: 2^{i} candidates, $ach w/ cost \frac{opt}{2^{i}}$

Batch *i*: 2^{i} candidates, each w/ cost $\frac{opt}{2^{i}}$

Batch *i*: 2^{i} candidates, each w/ cost $\frac{opt}{2^{i}}$

Batch *i*: 2^{i} candidates, each w/ cost $\frac{opt}{2^{i}}$

Batch *i*: 2^{i} candidates, each w/ cost $\frac{opt}{2^{i}}$

Batch *i*: 2^{i} candidates, each w/ cost $\frac{opt}{2^{i}}$

So we accrue $\Omega(B \cdot \log k)$ total cost!

Acceptance Property: with probability 1, hire s(i) candidates among first *i* candidates, for all *i*

Acceptance Property: with probability 1, hire s(i) candidates among first *i* candidates, for all *i*

Lemma: Every randomized algorithm that is competitive in random order model has the acceptance property.

Acceptance Property: with probability 1, hire s(i) candidates among first *i* candidates, for all *i*

Lemma: Every randomized algorithm that is competitive in **random** order model has the acceptance property.

Idea: construct instance such that a random permutation "looks like" adversarial instance with constant probability

Idea: construct instance such that a random permutation "looks like" adversarial instance with constant probability

opt

op

opt 2

 $\frac{\text{opt}}{4}$

op

 $\frac{\text{opt}}{4}$

Idea: construct instance such that a random permutation "looks like" adversarial instance with constant probability

Make many copies of each batch, with earlier batches duplicated more

Idea: construct instance such that a random permutation "looks like" adversarial instance with constant probability

Make many copies of each batch, with earlier batches duplicated more

Idea: construct instance such that a random permutation "looks like" adversarial instance with constant probability

Make many copies of each batch, with earlier batches duplicated more

Idea: construct instance such that a random permutation "looks like" adversarial instance with constant probability

Make many copies of each batch, with earlier batches duplicated more

Idea: construct instance such that a random permutation "looks like" adversarial instance with constant probability

Make many copies of each batch, with earlier batches duplicated more

Idea: construct instance such that a random permutation "looks like" adversarial instance with constant probability

Make many copies of each batch, with earlier batches duplicated more

Idea: construct instance such that a random permutation "looks like" adversarial instance with

Make many copies of each batch, with earlier batches duplicated more

Idea: construct instance such that a random permutation "looks like" adversarial instance with

Make many copies of each batch, with earlier batches duplicated more

Idea: construct instance such that a random permutation "looks like" adversarial instance with

Very similar to online Steiner tree

Upper Bound: Adversarial Order

First *i* candidates: (adversarial) arrival order

Simplified Cautious Algorithm: Candidate *i* hired iff candidate *i* in best solution after *i* candidates.

Unbounded competitiveness!

Unbounded competitiveness!

Why?

Simplified Cautious Algorithn Zandidate *i* hired iff candidate *i* in best solution after i candidates.

Unbounded competitiveness!

Why?

Simplified Cautious Algorithn Landidate *i* hired iff candidate *i* in best solution after i candidates.

Unbounded competitiveness!

Why?

Round up small costs

Simplified Cautious Algorithn Candidate *i* hired iff candidate *i* in best solution after *i* candidates.

Unbounded competitiveness!

Why?

Unbounded competitiveness!

Bucket medium costs

Why?

Round up small costs

Unbounded competitiveness!

Why?

Round up small costs

Unbounded competitiveness!

Why?

General Cautious Algorithm: Candidate *i* hired iff candidate *i* in **"best"** solution after *i* candidates.

General Cautious Algorithm: Candidate *i* hired iff candidate *i* in **"best"** solution after *i* candidates.

O(log *k*)-competitive algorithm

- Most classic setting: *n* candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals
 - Optimal 1/e-competitive threshold algorithm for k = 1

•
$$\left(1 - O\left(1/\sqrt{k}\right)\right)$$
 - competitive algorithm for

- Matroid secretary (above: *k*-uniform matroid)
- Knapsack secretary problems
- Prophet inequality problems
- Secretary with advice
 - Prediction on secretary quality
 - Alternatives to random order: e.g., sample of secretaries

Future Directions

general k

- Most classic setting: n candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals

• Optimal 1/e-competitive threshold algorithm for k = 1• $\left(1 - O\left(\frac{1}{\sqrt{k}}\right)\right)$ - competitive algorithm for general k

- Matroid secretary (above: *k*-uniform matroid)
- Knapsack secretary problems
- Prophet inequality problems
- Secretary with advice
 - Prediction on secretary quality
 - Alternatives to random order: e.g., sample of secretaries

Future Directions

- Most classic setting: n candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals

• Optimal 1/e-competitive threshold algorithm for k = 1• $\left(1 - O\left(\frac{1}{\sqrt{k}}\right)\right)$ - competitive algorithm for general k

- Matroid secretary (above: *k*-uniform matroid)
- Knapsack secretary problems
- Prophet inequality problems
- Secretary with advice
 - Prediction on secretary quality
 - Alternatives to random order: e.g., sample of secretaries

Future Directions

Minimization variants

- <u>Most classic setting</u>: *n* candidates, maximize expected aggregate value
 - Assume *n* is known AND random order arrivals

• Optimal 1/e-competitive threshold algorithm for k = 1• $\left(1 - O\left(\frac{1}{\sqrt{k}}\right)\right)$ - competitive algorithm for general k

- Matroid secretary (above: *k*-uniform matroid)
- Knapsack secretary problems
- Prophet inequality problems
- Secretary with advice
 - Prediction on secretary quality
 - Alternatives to random order: e.g., sample of secretaries

Future Directions

Minimization variants

Other learning-augmented approaches

Thank You