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• Most classic setting:  candidates, maximize expected aggregate valuen
‣Assume  is known AND random order arrivalsn
‣Optimal -competitive threshold algorithm for 1/e k = 1

‣ - competitive algorithm for general (1 − O (1/ k)) k

• Matroid secretary (above: -uniform matroid)k
• Knapsack secretary problems

• Prophet inequality problems

• Secretary with advice
‣Prediction on secretary quality
‣Alternatives to random order: e.g., sample of secretaries 

All based on maximization 
objectives 

All require beyond-worst-
case approach to learn 

scale of secretary quality
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Sample first 1/e 
fraction

Set threshold 
(price) 

Choose first to 
exceed threshold 

Upshot: only need to select most valuable candidate with some (constant) probability 

Random Order  
Arrivals

Know n

Random Order 
+ 

Sample 

Learn scale of 
quality in 

applicant pool
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Instance I Instance II n = 2
k = 1

1 N N2N

  
unbounded competitiveness!

N ≫ 1

Why is random order not sufficient?

• Public University is a minimization problem
• Cannot simply reject secretaries

‣Must hire at least  secretariesk
‣Could be forced to incur enormous cost 

• RAND / maximization: ignore cases where low-
value secretaries hired
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Learning-augmented approach: 

Online algorithm given “budget”  a priori B
  upper bound on OPT (cost of  cheapest secretaries)B k
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Results

Upper Bound of :   
✓Even with adversarial ordering  
✓Simple deterministic algorithm 

O(B ⋅ log k) Lower Bound of :   
✓Even with random ordering  
✓Against randomized algorithms

Ω(B ⋅ log k)

“Cautious” Algorithm

(Roughly) hire candidate  iff they are in 
“best” solution up until now 

i

Key step: (roughly) any competitive 
algorithm must hire each candidate 

hired by the cautious algorithm
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First  
candidates: 

sorted 

i

≤ B

> B

s(i) = 4

Acceptance Property: with probability 1, hire  candidates among 
first  candidates, for all 

s(i)
i i

Lemma: Every randomized algorithm that is competitive in 
adversarial order model has the acceptance property. 
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Batch : 
 candidates, 

each w/ cost 

i
2i

opt
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 batcheslog k

accept 1

accept 2

accept 4

So we accrue  total cost!Ω(B ⋅ log k)
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Idea: construct instance such that a random 
permutation “looks like” adversarial instance with 

Make many copies of each batch, with earlier batches duplicated more  opt
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4

opt
4
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 batcheslog k

Very similar to online Steiner tree



Upper Bound: Adversarial Order

First  
candidates: 

(adversarial) 
arrival order 

i



Upper Bound: Adversarial Order

First  
candidates: 

sorted 

i



Upper Bound: Adversarial Order

First  
candidates: 

sorted 

i

≤ B



Upper Bound: Adversarial Order

First  
candidates: 

sorted 

i

≤ B

> B



Upper Bound: Adversarial Order

First  
candidates: 

sorted 

i

≤ B

> B



Upper Bound: Adversarial Order

First  
candidates: 

sorted 

i

≤ B

> B

Best solution aer  candidatesi



Upper Bound: Adversarial Order

First  
candidates: 

sorted 

i

≤ B

> B

Best solution aer  candidatesi

Simplified Cautious Algorithm: Candidate  hired iff candidate  
in best solution after  candidates. 

i i
i



≤ B

> B

Best solution aer  candidatesi

Upper Bound: Adversarial Order

First  
candidates: 

sorted 

i

Simplified Cautious Algorithm: Candidate  hired iff candidate  
in best solution after  candidates. 

i i
i



≤ B

> B

Best solution aer  candidatesi

Upper Bound: Adversarial Order

Unbounded competitiveness!

First  
candidates: 

sorted 

i

Simplified Cautious Algorithm: Candidate  hired iff candidate  
in best solution after  candidates. 

i i
i



≤ B

> B

Best solution aer  candidatesi

Upper Bound: Adversarial Order
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Minimization variants

Other learning-augmented 
approaches
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