
Joint work with: Benjamin Moseley (Carnegie Mellon) and Kirk Pruhs (U. of Pittsburgh)

The Public University
Secretary Problem

SOSA 2024
Heather Newman (Carnegie Mellon)

“RAND” (Classic) Secretary Problem

“RAND” (Classic) Secretary Problem

x1 = 4

“RAND” (Classic) Secretary Problem

x1 = 4 x2 = 13

“RAND” (Classic) Secretary Problem

x1 = 4 x2 = 13 x3 = 2

“RAND” (Classic) Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

“RAND” (Classic) Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Candidates arrive online

“RAND” (Classic) Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Candidates arrive online
• Irrevocably accept or reject upon arrival

“RAND” (Classic) Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Candidates arrive online
• Irrevocably accept or reject upon arrival

•Choose at most candidatesk

“RAND” (Classic) Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Candidates arrive online
• Irrevocably accept or reject upon arrival

•Choose at most candidatesk

• = quality of candidate xi i

“RAND” (Classic) Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Candidates arrive online
• Irrevocably accept or reject upon arrival

•Choose at most candidatesk

• = quality of candidate xi i
•Objective: maximize aggregate quality

“RAND” (Classic) Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Choose at most candidates

• = quality of candidate

•Objective: maximize aggregate quality

k

xi i

“RAND” (Classic) Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Choose at most candidates

• = quality of candidate

•Objective: maximize aggregate quality

k

xi i

Public University Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

“RAND” (Classic) Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Choose at most candidates

• = quality of candidate

•Objective: maximize aggregate quality

k

xi i

Public University Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

Candidates arrive online
Irrevocably accept or reject upon arrival

“RAND” (Classic) Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Choose at most candidates

• = quality of candidate

•Objective: maximize aggregate quality

k

xi i

Public University Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Choose no less than candidatesk

Candidates arrive online
Irrevocably accept or reject upon arrival

“RAND” (Classic) Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Choose at most candidates

• = quality of candidate

•Objective: maximize aggregate quality

k

xi i

Public University Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Choose no less than candidatesk

• = cost of candidate xi i

Candidates arrive online
Irrevocably accept or reject upon arrival

“RAND” (Classic) Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Choose at most candidates

• = quality of candidate

•Objective: maximize aggregate quality

k

xi i

Public University Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Choose no less than candidatesk

• = cost of candidate xi i

•Objective: minimize aggregate cost

Candidates arrive online
Irrevocably accept or reject upon arrival

RAND (Maximization) Secretary Problems

RAND (Maximization) Secretary Problems

• Most classic setting: candidates, maximize expected aggregate valuen

RAND (Maximization) Secretary Problems

• Most classic setting: candidates, maximize expected aggregate valuen
‣Assume is known AND random order arrivalsn

RAND (Maximization) Secretary Problems

• Most classic setting: candidates, maximize expected aggregate valuen
‣Assume is known AND random order arrivalsn
‣Optimal -competitive threshold algorithm for 1/e k = 1

RAND (Maximization) Secretary Problems

• Most classic setting: candidates, maximize expected aggregate valuen
‣Assume is known AND random order arrivalsn
‣Optimal -competitive threshold algorithm for 1/e k = 1

‣ - competitive algorithm for general (1 − O (1/ k)) k

RAND (Maximization) Secretary Problems

• Most classic setting: candidates, maximize expected aggregate valuen
‣Assume is known AND random order arrivalsn
‣Optimal -competitive threshold algorithm for 1/e k = 1

‣ - competitive algorithm for general (1 − O (1/ k)) k

• Matroid secretary (above: -uniform matroid)k

RAND (Maximization) Secretary Problems

• Most classic setting: candidates, maximize expected aggregate valuen
‣Assume is known AND random order arrivalsn
‣Optimal -competitive threshold algorithm for 1/e k = 1

‣ - competitive algorithm for general (1 − O (1/ k)) k

• Matroid secretary (above: -uniform matroid)k
• Knapsack secretary problems

RAND (Maximization) Secretary Problems

• Most classic setting: candidates, maximize expected aggregate valuen
‣Assume is known AND random order arrivalsn
‣Optimal -competitive threshold algorithm for 1/e k = 1

‣ - competitive algorithm for general (1 − O (1/ k)) k

• Matroid secretary (above: -uniform matroid)k
• Knapsack secretary problems

• Prophet inequality problems

RAND (Maximization) Secretary Problems

• Most classic setting: candidates, maximize expected aggregate valuen
‣Assume is known AND random order arrivalsn
‣Optimal -competitive threshold algorithm for 1/e k = 1

‣ - competitive algorithm for general (1 − O (1/ k)) k

• Matroid secretary (above: -uniform matroid)k
• Knapsack secretary problems

• Prophet inequality problems

• Secretary with advice

RAND (Maximization) Secretary Problems

• Most classic setting: candidates, maximize expected aggregate valuen
‣Assume is known AND random order arrivalsn
‣Optimal -competitive threshold algorithm for 1/e k = 1

‣ - competitive algorithm for general (1 − O (1/ k)) k

• Matroid secretary (above: -uniform matroid)k
• Knapsack secretary problems

• Prophet inequality problems

• Secretary with advice
‣Prediction on secretary quality

RAND (Maximization) Secretary Problems

• Most classic setting: candidates, maximize expected aggregate valuen
‣Assume is known AND random order arrivalsn
‣Optimal -competitive threshold algorithm for 1/e k = 1

‣ - competitive algorithm for general (1 − O (1/ k)) k

• Matroid secretary (above: -uniform matroid)k
• Knapsack secretary problems

• Prophet inequality problems

• Secretary with advice
‣Prediction on secretary quality
‣Alternatives to random order: e.g., sample of secretaries

RAND (Maximization) Secretary Problems

• Most classic setting: candidates, maximize expected aggregate valuen
‣Assume is known AND random order arrivalsn
‣Optimal -competitive threshold algorithm for 1/e k = 1

‣ - competitive algorithm for general (1 − O (1/ k)) k

• Matroid secretary (above: -uniform matroid)k
• Knapsack secretary problems

• Prophet inequality problems

• Secretary with advice
‣Prediction on secretary quality
‣Alternatives to random order: e.g., sample of secretaries

All based on maximization
objectives

RAND (Maximization) Secretary Problems

• Most classic setting: candidates, maximize expected aggregate valuen
‣Assume is known AND random order arrivalsn
‣Optimal -competitive threshold algorithm for 1/e k = 1

‣ - competitive algorithm for general (1 − O (1/ k)) k

• Matroid secretary (above: -uniform matroid)k
• Knapsack secretary problems

• Prophet inequality problems

• Secretary with advice
‣Prediction on secretary quality
‣Alternatives to random order: e.g., sample of secretaries

All based on maximization
objectives

All require beyond-worst-
case approach to learn

scale of secretary quality

Sample-and-price for RAND

•Candidates arrive online
• Irrevocably accept or reject upon arrival

•Choose at most candidates

• = quality of candidate

•Objective: maximize expected aggregate quality

k

xi i

Sample-and-price for RAND

•Candidates arrive online
• Irrevocably accept or reject upon arrival

•Choose at most candidates

• = quality of candidate

•Objective: maximize expected aggregate quality

k

xi i

Random Order
Arrivals

Sample-and-price for RAND

•Candidates arrive online
• Irrevocably accept or reject upon arrival

•Choose at most candidates

• = quality of candidate

•Objective: maximize expected aggregate quality

k

xi i

Random Order
Arrivals

Know n

Sample first 1/e
fraction

Sample-and-price for RAND

•Candidates arrive online
• Irrevocably accept or reject upon arrival

•Choose at most candidates

• = quality of candidate

•Objective: maximize expected aggregate quality

k

xi i

Random Order
Arrivals

Know n

Sample first 1/e
fraction

Sample-and-price for RAND

•Candidates arrive online
• Irrevocably accept or reject upon arrival

•Choose at most candidates

• = quality of candidate

•Objective: maximize expected aggregate quality

k

xi i

Set threshold
(price)

Random Order
Arrivals

Know n

Choose first to
exceed threshold

Sample first 1/e
fraction

Sample-and-price for RAND

•Candidates arrive online
• Irrevocably accept or reject upon arrival

•Choose at most candidates

• = quality of candidate

•Objective: maximize expected aggregate quality

k

xi i

Set threshold
(price)

Random Order
Arrivals

Know n

Choose first to
exceed threshold

Sample first 1/e
fraction

Sample-and-price for RAND

•Candidates arrive online
• Irrevocably accept or reject upon arrival

•Choose at most candidates

• = quality of candidate

•Objective: maximize expected aggregate quality

k

xi i

Set threshold
(price)

Random Order
Arrivals

Know n

Sample-and-price for RAND

Sample first 1/e
fraction

Set threshold
(price)

Choose first to
exceed threshold

Upshot: only need to select most valuable candidate with some (constant) probability

Random Order
Arrivals

Know n

Sample-and-price for RAND

Sample first 1/e
fraction

Set threshold
(price)

Choose first to
exceed threshold

Upshot: only need to select most valuable candidate with some (constant) probability

Random Order
Arrivals

Know n

Random Order
+

Sample

Learn scale of
quality in

applicant pool

Public University Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Candidates arrive online
•Irrevocably accept or reject upon arrival

•Choose no less than candidates

• = cost of candidate

•Objective: minimize aggregate cost

k

xi i

Public University Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Candidates arrive online
•Irrevocably accept or reject upon arrival

•Choose no less than candidates

• = cost of candidate

•Objective: minimize aggregate cost

k

xi i

Public University Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Candidates arrive online
•Irrevocably accept or reject upon arrival

•Choose no less than candidates

• = cost of candidate

•Objective: minimize aggregate cost

k

xi i

Random Order
+

Knowing
INSUFFICIENT

n

Public University Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Candidates arrive online
•Irrevocably accept or reject upon arrival

•Choose no less than candidates

• = cost of candidate

•Objective: minimize aggregate cost

k

xi i

Random Order
+

Knowing
INSUFFICIENT

n

Public University Lower Bound

Public University Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Candidates arrive online
•Irrevocably accept or reject upon arrival

•Choose no less than candidates

• = cost of candidate

•Objective: minimize aggregate cost

k

xi i

Random Order
+

Knowing
INSUFFICIENT

n

Public University Lower Bound

Instance I

1 N

Instance II

N2N

n = 2
k = 1

Public University Secretary Problem

x1 = 4 x2 = 13 x3 = 2 x4 = 5

•Candidates arrive online
•Irrevocably accept or reject upon arrival

•Choose no less than candidates

• = cost of candidate

•Objective: minimize aggregate cost

k

xi i

Random Order
+

Knowing
INSUFFICIENT

n

Public University Lower Bound

Instance I

1 N

Instance II

N2N

n = 2
k = 1

unbounded competitiveness!

N ≫ 1

Public University Lower Bound

Instance I Instance II n = 2
k = 1

1 N N2N

unbounded competitiveness!

N ≫ 1

Public University Lower Bound

Instance I Instance II n = 2
k = 1

1 N N2N

unbounded competitiveness!

N ≫ 1

Public University Lower Bound

Instance I Instance II n = 2
k = 1

1 N N2N

unbounded competitiveness!

N ≫ 1

Why is random order not sufficient?

Public University Lower Bound

Instance I Instance II n = 2
k = 1

1 N N2N

unbounded competitiveness!

N ≫ 1

Why is random order not sufficient?

• Public University is a minimization problem

Public University Lower Bound

Instance I Instance II n = 2
k = 1

1 N N2N

unbounded competitiveness!

N ≫ 1

Why is random order not sufficient?

• Public University is a minimization problem
• Cannot simply reject secretaries

Public University Lower Bound

Instance I Instance II n = 2
k = 1

1 N N2N

unbounded competitiveness!

N ≫ 1

Why is random order not sufficient?

• Public University is a minimization problem
• Cannot simply reject secretaries

‣Must hire at least secretariesk

Public University Lower Bound

Instance I Instance II n = 2
k = 1

1 N N2N

unbounded competitiveness!

N ≫ 1

Why is random order not sufficient?

• Public University is a minimization problem
• Cannot simply reject secretaries

‣Must hire at least secretariesk
‣Could be forced to incur enormous cost

Public University Lower Bound

Instance I Instance II n = 2
k = 1

1 N N2N

unbounded competitiveness!

N ≫ 1

Why is random order not sufficient?

• Public University is a minimization problem
• Cannot simply reject secretaries

‣Must hire at least secretariesk
‣Could be forced to incur enormous cost

• RAND / maximization: ignore cases where low-
value secretaries hired

How do we break through the strong lower bound?

How do we break through the strong lower bound?

Learning-augmented approach:

How do we break through the strong lower bound?

Learning-augmented approach:

Online algorithm given “budget” a priori B
 upper bound on OPT (cost of cheapest secretaries)B k

Results

Results

Best possible online algorithm for Public University Secretary
-competitive against

in both adversarial and random arrival orders
Θ(log k) B

Results

Best possible online algorithm for Public University Secretary
-competitive against

in both adversarial and random arrival orders
Θ(log k) B

Upper Bound of : O(B ⋅ log k)

Results

Best possible online algorithm for Public University Secretary
-competitive against

in both adversarial and random arrival orders
Θ(log k) B

Upper Bound of : O(B ⋅ log k)
✓Even with adversarial ordering

Results

Best possible online algorithm for Public University Secretary
-competitive against

in both adversarial and random arrival orders
Θ(log k) B

Upper Bound of : O(B ⋅ log k)
✓Even with adversarial ordering
✓Simple deterministic algorithm

Results

Best possible online algorithm for Public University Secretary
-competitive against

in both adversarial and random arrival orders
Θ(log k) B

Upper Bound of : O(B ⋅ log k)
✓Even with adversarial ordering
✓Simple deterministic algorithm

Lower Bound of : Ω(B ⋅ log k)

Results

Best possible online algorithm for Public University Secretary
-competitive against

in both adversarial and random arrival orders
Θ(log k) B

Upper Bound of : O(B ⋅ log k)
✓Even with adversarial ordering
✓Simple deterministic algorithm

Lower Bound of : Ω(B ⋅ log k)
✓Even with random ordering

Results

Best possible online algorithm for Public University Secretary
-competitive against

in both adversarial and random arrival orders
Θ(log k) B

Upper Bound of : O(B ⋅ log k)
✓Even with adversarial ordering
✓Simple deterministic algorithm

Lower Bound of : Ω(B ⋅ log k)
✓Even with random ordering
✓Against randomized algorithms

Results

Best possible online algorithm for Public University Secretary
-competitive against

in both adversarial and random arrival orders
Θ(log k) B

Upper Bound of : O(B ⋅ log k)
✓Even with adversarial ordering
✓Simple deterministic algorithm

Lower Bound of : Ω(B ⋅ log k)
✓Even with random ordering
✓Against randomized algorithms

Key Takeaway: randomization of negligible benefit!

Results

Upper Bound of :
✓Even with adversarial ordering
✓Simple deterministic algorithm

O(B ⋅ log k) Lower Bound of :
✓Even with random ordering
✓Against randomized algorithms

Ω(B ⋅ log k)

Results

Upper Bound of :
✓Even with adversarial ordering
✓Simple deterministic algorithm

O(B ⋅ log k) Lower Bound of :
✓Even with random ordering
✓Against randomized algorithms

Ω(B ⋅ log k)

“Cautious” Algorithm

Results

Upper Bound of :
✓Even with adversarial ordering
✓Simple deterministic algorithm

O(B ⋅ log k) Lower Bound of :
✓Even with random ordering
✓Against randomized algorithms

Ω(B ⋅ log k)

“Cautious” Algorithm

(Roughly) hire candidate iff they are in
“best” solution up until now

i

Results

Upper Bound of :
✓Even with adversarial ordering
✓Simple deterministic algorithm

O(B ⋅ log k) Lower Bound of :
✓Even with random ordering
✓Against randomized algorithms

Ω(B ⋅ log k)

“Cautious” Algorithm

(Roughly) hire candidate iff they are in
“best” solution up until now

i

Key step: (roughly) any competitive
algorithm must hire each candidate

hired by the cautious algorithm

Lower Bound: Adversarial Order

First
candidates:

(adversarial)
arrival order

i

Lower Bound: Adversarial Order

First
candidates:

sorted

i

Lower Bound: Adversarial Order

First
candidates:

sorted

i

≤ B

Lower Bound: Adversarial Order

First
candidates:

sorted

i

≤ B

> B

Lower Bound: Adversarial Order

First
candidates:

sorted

i

≤ B

> B

Lower Bound: Adversarial Order

First
candidates:

sorted

i

≤ B

> B

s(i) = 4

Lower Bound: Adversarial Order

First
candidates:

sorted

i

≤ B

> B

s(i) = 4

Acceptance Property: with probability 1, hire candidates among
first candidates, for all

s(i)
i i

Lower Bound: Adversarial Order

First
candidates:

sorted

i

≤ B

> B

s(i) = 4

Acceptance Property: with probability 1, hire candidates among
first candidates, for all

s(i)
i i

Lemma: Every randomized algorithm that is competitive in
adversarial order model has the acceptance property.

Lower Bound: Adversarial Order

Lower Bound: Adversarial Order

Idea: high cost secretaries arrive first

Lower Bound: Adversarial Order

Idea: high cost secretaries arrive first opt

Lower Bound: Adversarial Order

Idea: high cost secretaries arrive first opt

opt
2

opt
2

Lower Bound: Adversarial Order

Idea: high cost secretaries arrive first opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

Lower Bound: Adversarial Order

Idea: high cost secretaries arrive first opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

Batch :
 candidates,

each w/ cost

i
2i

opt
2i

Lower Bound: Adversarial Order

Idea: high cost secretaries arrive first opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

Batch :
 candidates,

each w/ cost

i
2i

opt
2i

 batcheslog k

Lower Bound: Adversarial Order

Idea: high cost secretaries arrive first opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

Batch :
 candidates,

each w/ cost

i
2i

opt
2i

 batcheslog k

accept 1

Lower Bound: Adversarial Order

Idea: high cost secretaries arrive first opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

Batch :
 candidates,

each w/ cost

i
2i

opt
2i

 batcheslog k

accept 1

Lower Bound: Adversarial Order

Idea: high cost secretaries arrive first opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

Batch :
 candidates,

each w/ cost

i
2i

opt
2i

 batcheslog k

accept 1

accept 2

Lower Bound: Adversarial Order

Idea: high cost secretaries arrive first opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

Batch :
 candidates,

each w/ cost

i
2i

opt
2i

 batcheslog k

accept 1

accept 2

Lower Bound: Adversarial Order

Idea: high cost secretaries arrive first opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

Batch :
 candidates,

each w/ cost

i
2i

opt
2i

 batcheslog k

accept 1

accept 2

accept 4

Lower Bound: Adversarial Order

Idea: high cost secretaries arrive first opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

Batch :
 candidates,

each w/ cost

i
2i

opt
2i

 batcheslog k

accept 1

accept 2

accept 4

Lower Bound: Adversarial Order

Idea: high cost secretaries arrive first opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

Batch :
 candidates,

each w/ cost

i
2i

opt
2i

 batcheslog k

accept 1

accept 2

accept 4

So we accrue total cost!Ω(B ⋅ log k)

Lower Bound: Random Order

Lower Bound: Random Order

Acceptance Property: with probability 1, hire candidates among
first candidates, for all

s(i)
i i

Lower Bound: Random Order

Acceptance Property: with probability 1, hire candidates among
first candidates, for all

s(i)
i i

Lemma: Every randomized algorithm that is competitive in
random order model has the acceptance property.

Lower Bound: Random Order

Acceptance Property: with probability 1, hire candidates among
first candidates, for all

s(i)
i i

Lemma: Every randomized algorithm that is competitive in
random order model has the acceptance property.

Idea: construct instance such that a random permutation “looks like”
adversarial instance with constant probability

Lower Bound: Random Order

Idea: construct instance such that a random permutation “looks like”
adversarial instance with constant probability

opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

 batcheslog k

Lower Bound: Random Order

Idea: construct instance such that a random permutation “looks like”
adversarial instance with constant probability

opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

 batcheslog k

Lower Bound: Random Order

Idea: construct instance such that a random permutation “looks like”
adversarial instance with constant probability

Make many copies of each batch, with earlier batches duplicated more opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

 batcheslog k

Lower Bound: Random Order

Idea: construct instance such that a random permutation “looks like”
adversarial instance with constant probability

Make many copies of each batch, with earlier batches duplicated more opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

 batcheslog k

Lower Bound: Random Order

Make many copies of each batch, with earlier batches duplicated more opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

 batcheslog kIdea: construct instance such that a random permutation “looks like”
adversarial instance with constant probability

Lower Bound: Random Order

Make many copies of each batch, with earlier batches duplicated more opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

 batcheslog kIdea: construct instance such that a random permutation “looks like”
adversarial instance with constant probability

Lower Bound: Random Order

Make many copies of each batch, with earlier batches duplicated more opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

 batcheslog kIdea: construct instance such that a random permutation “looks like”
adversarial instance with constant probability

Lower Bound: Random Order

Make many copies of each batch, with earlier batches duplicated more opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

 batcheslog kIdea: construct instance such that a random permutation “looks like”
adversarial instance with constant probability

Lower Bound: Random Order

Idea: construct instance such that a random
permutation “looks like” adversarial instance with

Make many copies of each batch, with earlier batches duplicated more opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

 batcheslog k

Lower Bound: Random Order

Idea: construct instance such that a random
permutation “looks like” adversarial instance with

Make many copies of each batch, with earlier batches duplicated more opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

 batcheslog k

Lower Bound: Random Order

Idea: construct instance such that a random
permutation “looks like” adversarial instance with

Make many copies of each batch, with earlier batches duplicated more opt

opt
2

opt
2

opt
4

opt
4

opt
4

opt
4

 batcheslog k

Very similar to online Steiner tree

Upper Bound: Adversarial Order

First
candidates:

(adversarial)
arrival order

i

Upper Bound: Adversarial Order

First
candidates:

sorted

i

Upper Bound: Adversarial Order

First
candidates:

sorted

i

≤ B

Upper Bound: Adversarial Order

First
candidates:

sorted

i

≤ B

> B

Upper Bound: Adversarial Order

First
candidates:

sorted

i

≤ B

> B

Upper Bound: Adversarial Order

First
candidates:

sorted

i

≤ B

> B

Best solution aer candidatesi

Upper Bound: Adversarial Order

First
candidates:

sorted

i

≤ B

> B

Best solution aer candidatesi

Simplified Cautious Algorithm: Candidate hired iff candidate
in best solution after candidates.

i i
i

≤ B

> B

Best solution aer candidatesi

Upper Bound: Adversarial Order

First
candidates:

sorted

i

Simplified Cautious Algorithm: Candidate hired iff candidate
in best solution after candidates.

i i
i

≤ B

> B

Best solution aer candidatesi

Upper Bound: Adversarial Order

Unbounded competitiveness!

First
candidates:

sorted

i

Simplified Cautious Algorithm: Candidate hired iff candidate
in best solution after candidates.

i i
i

≤ B

> B

Best solution aer candidatesi

Upper Bound: Adversarial Order

Unbounded competitiveness!

First
candidates:

sorted

i

Simplified Cautious Algorithm: Candidate hired iff candidate
in best solution after candidates.

i i
i

Why?
Treats candidates of similar cost differently.

Upper Bound: Adversarial Order

Unbounded competitiveness!

First
candidates:

sorted

i

Simplified Cautious Algorithm: Candidate hired iff candidate
in best solution after candidates.

i i
i

Why?
Treats candidates of similar cost differently.

Upper Bound: Adversarial Order

Unbounded competitiveness!

First
candidates:

sorted

i

Simplified Cautious Algorithm: Candidate hired iff candidate
in best solution after candidates.

i i
i

Why?
Treats candidates of similar cost differently.

Upper Bound: Adversarial Order

Unbounded competitiveness!

First
candidates:

sorted

i

Round up small
costs

Simplified Cautious Algorithm: Candidate hired iff candidate
in best solution after candidates.

i i
i

Why?
Treats candidates of similar cost differently.

Upper Bound: Adversarial Order

Unbounded competitiveness!

First
candidates:

sorted

i

Round up small
costs

Simplified Cautious Algorithm: Candidate hired iff candidate
in best solution after candidates.

i i
i

Why?
Treats candidates of similar cost differently.

Bucket medium costs

Upper Bound: Adversarial Order

Unbounded competitiveness!

First
candidates:

sorted

i

Round down Round down

Simplified Cautious Algorithm: Candidate hired iff candidate
in best solution after candidates.

i i
i

Why?
Treats candidates of similar cost differently.

Round up small
costs

Upper Bound: Adversarial Order

Unbounded competitiveness!

First
candidates:

sorted

i

Round down Round down

Simplified Cautious Algorithm: Candidate hired iff candidate
in best solution after candidates.

i i
i

Why?
Treats candidates of similar cost differently.

Round up small
costs

Discard large
costs

Upper Bound: Adversarial Order

First
candidates:

sorted

i

Round down Round downRound up small
costs

Discard large
costs

General Cautious Algorithm: Candidate hired iff candidate in
“best” solution after candidates.

i i
i

Upper Bound: Adversarial Order

First
candidates:

sorted

i

Round down Round downRound up small
costs

Discard large
costs

General Cautious Algorithm: Candidate hired iff candidate in
“best” solution after candidates.

i i
i

-competitive algorithmO(log k)

Future Directions
• Most classic setting: candidates, maximize expected aggregate value

‣Assume is known AND random order arrivals
‣Optimal -competitive threshold algorithm for

‣ - competitive algorithm for general

• Matroid secretary (above: -uniform matroid)

• Knapsack secretary problems
• Prophet inequality problems
• Secretary with advice

‣Prediction on secretary quality
‣Alternatives to random order: e.g., sample of secretaries

n

n

1/e k = 1

(1 − O (1/ k)) k

k

Future Directions
• Most classic setting: candidates, maximize expected aggregate value

‣Assume is known AND random order arrivals
‣Optimal -competitive threshold algorithm for

‣ - competitive algorithm for general

• Matroid secretary (above: -uniform matroid)

• Knapsack secretary problems
• Prophet inequality problems
• Secretary with advice

‣Prediction on secretary quality
‣Alternatives to random order: e.g., sample of secretaries

n

n

1/e k = 1

(1 − O (1/ k)) k

k

Future Directions
• Most classic setting: candidates, maximize expected aggregate value

‣Assume is known AND random order arrivals
‣Optimal -competitive threshold algorithm for

‣ - competitive algorithm for general

• Matroid secretary (above: -uniform matroid)

• Knapsack secretary problems
• Prophet inequality problems
• Secretary with advice

‣Prediction on secretary quality
‣Alternatives to random order: e.g., sample of secretaries

n

n

1/e k = 1

(1 − O (1/ k)) k

k

Minimization variants

Future Directions
• Most classic setting: candidates, maximize expected aggregate value

‣Assume is known AND random order arrivals
‣Optimal -competitive threshold algorithm for

‣ - competitive algorithm for general

• Matroid secretary (above: -uniform matroid)

• Knapsack secretary problems
• Prophet inequality problems
• Secretary with advice

‣Prediction on secretary quality
‣Alternatives to random order: e.g., sample of secretaries

n

n

1/e k = 1

(1 − O (1/ k)) k

k

Minimization variants

Other learning-augmented
approaches

Thank You

