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Trouble with using convex program

ℓp-norm correlation clustering algs solve a convex program

Solution specific to one 
fixed ℓp-norm 

Solving metric 
constrained programs on 

large networks is slow!

Not very amenable to 
online, streaming, etc. 

All-norms objective  
✦Seek: single clustering that well-approximates all ℓp-

norms simultaneously
✦Introduced by [Azar, Epstein, Richter, Woeginger ’04] for 

load balancing
✦  set cover, flow time in scheduling, and more ℓp
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ℓp-norm correlation clustering algs solve a convex program

Solution specific to one 
fixed ℓp-norm 

Solving metric 
constrained LPs on 

large networks is slow!

Not very amenable to 
online, streaming, etc. 

All-norms objective   
✦ Seek: single clustering that 

well-approximates all ℓp-norms 

Today:
• Does there exist an all-norms solution for CC?
• Can it be found through a fast, combinatorial 

algorithm?
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Key Observation 2: for positive edges, correlation metric has bounded cost for all !p
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Today

✦The correlation metric (constructing a “guess” for the optimal solution to convex relaxation) 

✦Tweaking correlation metric for all -norms 

✦Summary and open questions 

ℓp
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Summary

Solution specific to one 
fixed ℓp-norm 

Solving metric 
constrained LPs on 

large networks is slow!

Not very amenable to 
online, streaming 

ℓp-norm correlation clustering algs solve a convex program

Combinatorial techniques can 
resolve these issues
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26

Δ = max (+) degree of any vertex 
ω = matrix multiplication exponent

Summary

Correlation clustering has interesting 
combinatorial structure that can be exploited

Result 1: O(1)-apx alg with run-time O(min{ n·∆2·log n , nω}). Near-linear for sparse graphs.

Result 2: ∃ an alg producing a clustering that is O(1)-apx for all ℓp-norms, simultaneously.

First combinatorial alg for 
p > 1
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Thank you!
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