Simultaneously Approximating All ℓ_p -norms in Correlation Clustering

Heather Newman

Carnegie Mellon University (CMU)

*Special thanks to Sami Davies for contributions to the slide deck.

ICALP 2024

Joint work with: Sami Davies* (UC Berkeley/Simons) and Benjamin Moseley (CMU)

Model:

Cluster similar nodes together, separate dissimilar nodes

- Cluster similar nodes together, separate dissimilar nodes
- •Number / sizes of clusters (of vertices) not pre-fixed / pre-specified

- Cluster similar nodes together, separate dissimilar nodes
- •Number / sizes of clusters (of vertices) not pre-fixed / pre-specified
- •Complete, unweighted graph: each edge (+) or (-)

- Cluster similar nodes together, separate dissimilar nodes
- •Number / sizes of clusters (of vertices) not pre-fixed / pre-specified
- •Complete, unweighted graph: each edge (+) or (-)

- Cluster similar nodes together, separate dissimilar nodes
- •Number / sizes of clusters (of vertices) not pre-fixed / pre-specified
- •Complete, unweighted graph: each edge (+) or (-)

- Cluster similar nodes together, separate dissimilar nodes
- •Number / sizes of clusters (of vertices) not pre-fixed / pre-specified
- •Complete, unweighted graph: each edge (+) or (-)

- Cluster similar nodes together, separate dissimilar nodes
- Number / sizes of clusters (of vertices) not pre-fixed / pre-specified
- Complete, unweighted graph: each edge (+) or (-)
- •Edge (*u*,*v*) in **disagreement** w.r.t C if
 - + (+) with *u*, *v* different clusters or
 - + (–) with *u*, *v* same cluster

Model:

- Cluster similar nodes together, separate dissimilar nodes Number / sizes of clusters (of vertices) not pre-fixed / pre-specified Complete, unweighted graph: each edge (+) or (-)
- •Edge (*u*,*v*) in **disagreement** w.r.t C if
 - + (+) with *u*, *v* different clusters or
 - + (–) with *u*, *v* same cluster

Model:

- Cluster similar nodes together, separate dissimilar nodes Number / sizes of clusters (of vertices) not pre-fixed / pre-specified Complete, unweighted graph: each edge (+) or (-)

- •Edge (*u,v*) in **disagreement** w.r.t C if
 - + (+) with *u*, *v* different clusters or
 - + (–) with *u*, *v* same cluster

Model:

- Cluster similar nodes together, separate dissimilar nodes Number / sizes of clusters (of vertices) not pre-fixed / pre-specified Complete, unweighted graph: each edge (+) or (-)

- •Edge (*u,v*) in **disagreement** w.r.t C if
 - + (+) with *u*, *v* different clusters or
 - + (–) with *u*, *v* same cluster

 $y_{C}(v) = #$ disagreements w.r.t. C incident to v

Model:

- Cluster similar nodes together, separate dissimilar nodes Number / sizes of clusters (of vertices) not pre-fixed / pre-specified Complete, unweighted graph: each edge (+) or (-)

- •Edge (*u,v*) in **disagreement** w.r.t C if
 - + (+) with *u*, *v* different clusters or
 - + (–) with *u*, *v* same cluster

 $y_{C}(v) = #$ disagreements w.r.t. C incident to v

Goal: find
$$\operatorname{argmin}_{C} \sum y_{C}(v) = \|y_{C}\|_{1}$$

Model:

- Cluster similar nodes together, separate dissimilar nodes
- Number / sizes of clusters (of vertices) not pre-fixed / pre-specified
- Complete, unweighted graph: each edge (+) or (-)
- •Edge (*u,v*) in **disagreement** w.r.t C if
 - + (+) with u, v different clusters or
 - + (–) with *u*, *v* same cluster

 $y_C(v) = #$ disagreements w.r.t. C incident to v

Goal: find
$$\operatorname{argmin}_{C} \sum y_{C}(v) = \|y_{C}\|_{1}$$

Model:

- Cluster similar nodes together, separate dissimilar nodes
- Number / sizes of clusters (of vertices) not pre-fixed / pre-specified
- Complete, unweighted graph: each edge (+) or (-)
- •Edge (*u,v*) in **disagreement** w.r.t C if
 - + (+) with u, v different clusters or
 - + (–) with *u*, *v* same cluster

 $y_C(v) = #$ disagreements w.r.t. C incident to v

 $\operatorname{argmin}_{C} \|y_{C}\|_{p}$

Goal: find argmin

Model:

- Cluster similar nodes together, separate dissimilar nodes
- Number / sizes of clusters (of vertices) not pre-fixed / pre-specified
- Complete, unweighted graph: each edge (+) or (-)
- •Edge (*u,v*) in **disagreement** w.r.t C if
 - + (+) with u, v different clusters or
 - + (–) with *u*, *v* same cluster

 $y_C(v) = #$ disagreements w.r.t. C incident to v Goal: find argmin $\operatorname{argmin}_{C} \|y_{C}\|_{p}$ *p*≥1

$$\ell_1 = \operatorname{orig}$$

 $\ell_{\infty} = \min r$

jinal obj max norm

Model:

- Cluster similar nodes together, separate dissimilar nodes Number / sizes of clusters (of vertices) not pre-fixed / pre-specified
- Complete, unweighted graph: each edge (+) or (-)

 $p \text{ small} = \text{global obj} \leftrightarrow p \text{ large} = \text{local/fair obj}$

with u, v different clusters of

+ (–) with *u*, *v* same cluster

 $y_{C}(v) = #$ disagreements w.r.t. C incident to v

Goal: find argmin

ginal obj max norm

For l_1 -norm (original) objective:

Introduced by [Bansal, Blum, Chawla '04]

For l_1 -norm (original) objective:

- Introduced by [Bansal, Blum, Chawla '04]
- Linear time Pivot algorithm gives 3-apx [Ailon, Charikar, Newman JACM08] [Chierichetti, Dalvi, Kumar KDD14]
- ► APX-hard

[Charikar, Guruswami, Wirth JCSS05]

awla '04] 3-apx mar KDD14]

For l_1 -norm (original) objective:

- Introduced by [Bansal, Blum, Chawla '04]
- Linear time Pivot algorithm gives 3-apx [Ailon, Charikar, Newman JACM08] [Chierichetti, Dalvi, Kumar KDD14]
- ► APX-hard

[Charikar, Guruswami, Wirth JCSS05]

Many other active threads of research! [Ahmadi, Khuller, Saha IPCO19] [Veldt ICML22] [Cohen-Addad, Lee, Li, Newman FOCS23]

For l_1 -norm (original) objective:

- Introduced by [Bansal, Blum, Chawla '04]
- Linear time Pivot algorithm gives 3-apx [Ailon, Charikar, Newman JACM08] [Chierichetti, Dalvi, Kumar KDD14]
- ► APX-hard

[Charikar, Guruswami, Wirth JCSS05]

Many other active threads of research! [Ahmadi, Khuller, Saha IPCO19] [Veldt ICML22] [Cohen-Addad, Lee, Li, Newman FOCS23]

For general l_p -norm objectives:

- 5-approximation algorithm; NP-hard (even for $p = \infty$!) [Puleo, Milenkovic ICML16], [Charikar, Gupta, Schwartz IPCO17], [Kalhan, Makarychev, Zhou ICML19]
- All previous techniques round solution to a convex program

ℓ_p -norm correlation clustering algs solve a convex program

Solving *metric* constrained programs on large networks is slow!

Work on solving CC programs fast only scales to graphs with few thousand vertices!

[Ruggles et al. '20], [Sonthalia & Gilbert '20], [Veldt '22]

ℓ_p -norm correlation clustering algs solve a convex program

Solving *metric* constrained programs on large networks is slow!

Not very amenable to online, streaming, etc.

Work on solving CC programs fast only scales to graphs with few thousand vertices!

[Ruggles et al. '20], [Sonthalia & Gilbert '20], [Veldt '22]

ℓ_p -norm correlation clustering algs solve a convex program

Solving *metric* constrained programs on large networks is slow!

Not very amenable to online, streaming, etc.

Work on solving CC programs fast only scales to graphs with few thousand vertices!

[Ruggles et al. '20], [Sonthalia & Gilbert '20], [Veldt '22]

ℓ_p -norm correlation clustering algs solve a convex program

Solution specific to one **fixed** l_p -norm

Solving *metric* constrained programs on large networks is slow!

ℓ_p -norm correlation clustering algs solve a convex program

Solution specific to **one fixed** l_p -norm

Solving *metric* constrained programs on large networks is slow!

ℓ_p -norm correlation clustering algs solve a convex program

Solution specific to **one fixed** l_p -norm

All-norms objective

Solving *metric* constrained programs on large networks is slow!

ℓ_p -norm correlation clustering algs solve a convex program

Solution specific to **one fixed** l_p -norm

All-norms objective

\diamondSeek: single clustering that well-approximates all ℓ_p norms simultaneously

Solving *metric* constrained programs on large networks is slow!

ℓ_p -norm correlation clustering algs solve a convex program

Solution specific to **one fixed** l_p -norm

All-norms objective

Seek: single clustering that well-approximates all ℓ_p norms simultaneously Introduced by [Azar, Epstein, Richter, Woeginger '04] for load balancing

Solving *metric* constrained programs on large networks is slow!

ℓ_p -norm correlation clustering algs solve a convex program

Solution specific to **one fixed** l_p -norm

All-norms objective

Seek: single clustering that well-approximates all ℓ_p norms simultaneously Introduced by [Azar, Epstein, Richter, Woeginger '04] for load balancing \mathbf{A}_{p} set cover, flow time in scheduling, and more

Can we do better?

ℓ_p -norm correlation clustering algs solve a convex program

Solving *metric constrained* LPs on large networks is slow!

Not very amenable to online, streaming, etc.

Solution specific to **one fixed** l_p -norm

All-norms objective

◆ Seek: single clustering that well-approximates all ℓ_p-norms

Can we do better?

ℓ_p -norm correlation clustering algs solve a convex program

Solving *metric constrained* LPs on large networks is slow!

Not very amenable to online, streaming, etc.

Solution specific to **one fixed** l_p -norm

All-norms objective

◆ Seek: single clustering that well-approximates all ℓ_p-norms

Can we do better?

ℓ_p -norm correlation clustering algs solve a convex program

Solving *metric* constrained LPs on large networks is slow!

Today: • Does there exist an <u>all-norms</u> solution for CC? Solution specific to **one fixed** l_p -norm

All-norms objective

Seek: single clustering that well-approximates all ℓ_p -norms

Can we do better?

ℓ_p -norm correlation clustering algs solve a convex program

Solving *metric constrained* LPs on large networks is slow!

Not very amenable to online, streaming, etc.

Today:

• Does there exist an <u>all-norms</u> solution for CC?

• *Can it be found through a <i>fast, combinatorial algorithm?*

Solution specific to **one fixed** l_p -norm

tion for CC? nbinatorial **All-norms objective**

◆ Seek: single clustering that well-approximates all ℓ_p-norms

Cost for l_1 norm is $\theta(n^2)$, nowhere near optimal! **OPT** for ℓ_{∞} + Friends n/2+1 ... n/2 ..n

Yes!

Yes!

(1) O(1)-apx for min-max CC ($p = \infty$)

Yes!

(1) O(1)-apx for min-max CC ($p = \infty$) \hookrightarrow completely combinatorial (first for $p = \infty$)

Yes!

(1) O(1)-apx for min-max CC ($p = \infty$) \hookrightarrow completely combinatorial (first for $p = \infty$) $\hookrightarrow O(n^{\omega})$ time, near-linear for small max (+) degree

Yes!

(1) O(1)-apx for min-max CC ($p = \infty$) \hookrightarrow completely combinatorial (first for $p = \infty$) $\hookrightarrow O(n^{\omega})$ time, near-linear for small max (+) degree

"tweak"

Yes!

(1) O(1)-apx for min-max CC ($p = \infty$) \hookrightarrow completely combinatorial (first for $p = \infty$) $\hookrightarrow O(n^{\omega})$ time, near-linear for small max (+) degree

"tweak"

Yes!

(1) O(1)-apx for min-max CC ($p = \infty$) \hookrightarrow completely combinatorial (first for $p = \infty$) $\hookrightarrow O(n^{\omega})$ time, near-linear for small max (+) degree

(2) O(1)-apx for <u>all</u> $p \in [1,\infty]$, i.e., <u>all-norms solution</u>

"tweak"

Yes!

(1) O(1)-apx for min-max CC ($p = \infty$)

(2) O(1)-apx for <u>all $p \in [1,\infty]$ </u>, i.e., <u>all-norms solution</u> \hookrightarrow completely combinatorial (first for p > 1)

 \hookrightarrow completely combinatorial (first for $p = \infty$) $\hookrightarrow O(n^{\omega})$ time, near-linear for small max (+) degree "tweak"

Yes!

(1) O(1)-apx for min-max CC ($p = \infty$)

- \hookrightarrow completely combinatorial (first for $p = \infty$) $\hookrightarrow O(n^{\omega})$ time, near-linear for small max (+) degree "tweak"
- (2) O(1)-apx for <u>all $p \in [1,\infty]$ </u>, i.e., <u>all-norms solution</u> \hookrightarrow completely combinatorial (first for p > 1) $\hookrightarrow O(n^{\omega})$ time, near-linear for small max (+) degree

Yes!

(1) O(1)-apx for min-max CC ($p = \infty$) \hookrightarrow completely combinatorial (first for $p = \infty$) $\hookrightarrow O(n^{\omega})$ time, near-linear for small max (+) degree "tweak"

(2) O(1)-apx for <u>all $p \in [1,\infty]$ </u>, i.e., <u>all-norms solution</u> < \hookrightarrow completely combinatorial (first for p > 1) $\hookrightarrow O(n^{\omega})$ time, near-linear for small max (+) degree

Not possible for *k*-center & *k*-median [Alamdari & Shmoys WAOA17]

Yes!

"Fast Combinatorial Algorithms for Min Max Correlation Clustering" (ICML 23)

(1) O(1)-apx for min-max CC ($p = \infty$) \hookrightarrow completely combinatorial (first for $p = \infty$) $\hookrightarrow O(n^{\omega})$ time, near-linear for small max (+) degree "tweak"

(2) O(1)-apx for <u>all $p \in [1,\infty]$ </u>, i.e., <u>all-norms solution</u> < \hookrightarrow completely combinatorial (first for p > 1) $\hookrightarrow O(n^{\omega})$ time, near-linear for small max (+) degree

Not possible for *k*-center & *k*-median [Alamdari & Shmoys WAOA17]

Convex program relaxation

Can be solved "efficiently"

Convex program relaxation

Can be solved "efficiently"

$$y(u) = \sum_{v \in N_u^+} x_{uv} + \sum_{v \in N_u^-} (1 - x_{uv}) \quad \forall u \in V$$

$$x_{uv} \le x_{vw} + x_{uw} \quad \forall u, v, w \in V$$

$$0 \le x_{uv} \le 1 \quad \forall u, v \in V$$

$x_{uv} = 0$ then u, v same cluster $x_{uv} = 1$ then u, v different clusters

Convex program relaxation

Can be solved "efficiently"

$$y(u) = \sum_{v \in N_u^+} x_{uv} + \sum_{v \in N_u^-} (1 - x_{uv}) \quad \forall u \in V$$

$$x_{uv} \le x_{vw} + x_{uw} \quad \forall u, v, w \in V$$

$$0 \le x_{uv} \le 1 \quad \forall u, v \in V$$

$x_{uv} = 0$ then u, v same cluster $x_{uv} = 1$ then u, v different clusters

triangle inequality only constraints ← feasible solutions = (semi-)metrics

Convex program relaxation

Can be solved "efficiently"

$$y(u) = \sum_{v \in N_u^+} x_{uv} + \sum_{v \in N_u^-} (1 - x_{uv}) \quad \forall u \in V$$
$$x_{uv} \le x_{vw} + x_{uw} \quad \forall u, v, w \in V$$
$$0 \le x_{uv} \le 1 \quad \forall u, v \in V$$

$x_{uv} = 0$ then u, v same cluster $x_{uv} = 1$ then u, v different clusters

triangle inequality only constraints ← feasible solutions = (semi-)metrics

Convex program relaxation

Can be solved "efficiently"

$x_{uv} = 0$ then u, v same cluster $x_{uv} = 1$ then u, v different clusters

triangle inequality only constraints ← feasible solutions = (semi-)metrics

Convex program relaxation

Can be solved "efficiently"

triangle inequality only constraints ← feasible solutions = (semi-)metrics

Convex program relaxation

Can be solved "efficiently"

Past approaches Step 1: Solve convex program Step 2: "Round" fractional solution to integral one

triangle inequality <u>only</u> constraints ← feasible solutions = (semi-)metrics

Convex program relaxation Can be solved "efficiently" $\min \|y\|_p$ $y(u) = \sum x_{uv} + \sum (1 - x_{uv})$ $\forall u \in V$ $v \in N_u^+$ $v \in N_u^ \forall u, v, w \in V$ $x_{uv} \le x_{vw} + x_{uw}$ $0 \le x_{uv} \le 1$ $\forall u, v \in V$ "probability" u, v separated

Convex program relaxation

Can be solved "efficiently"

Rounding algorithm by Kalhan, Makarychev, Zhou

Convex program relaxation

Can be solved "efficiently"

The correlation metric (constructing a "guess" for the optimal solution to convex relaxation)

+Tweaking correlation metric for all ℓ_p -norms

Open questions

The correlation metric (constructing a "guess" for the optimal solution to convex relaxation)

+Tweaking correlation metric for all ℓ_p -norms

Open questions

based solely on combinatorial properties

Rounding algorithm by Kalhan, Makarychev, Zhou

Convex program relaxation

$$y(u) = \sum_{v \in N_u^+} x_{uv} + \sum_{v \in N_u^-} (1 - x_{uv}) \quad \forall u \in V$$

$$x_{uv} \le x_{vw} + x_{uw} \quad \forall u, v, w \in V$$

$$0 \le x_{uv} \le 1 \quad \forall u, v \in V$$

Rounding algorithm by Kalhan, Makarychev, Zhou

Convex program relaxation Don't solve this!

$$y(u) = \sum_{v \in N_u^+} x_{uv} + \sum_{v \in N_u^-} (1 - x_{uv}) \quad \forall u \in V$$

$$x_{uv} \le x_{vw} + x_{uw} \quad \forall u, v, w \in V$$

$$0 \le x_{uv} \le 1 \quad \forall u, v \in V$$

Rounding algorithm by Kalhan, Makarychev, Zhou

Convex program relaxation **Don't solve this!**

Quantify probabilities $x_{\mu\nu}$ **combinatorially**

$$\begin{aligned} y(u) &= \sum_{v \in N_u^+} x_{uv} + \sum_{v \in N_u^-} (1 - x_{uv}) & \forall u \in V \\ x_{uv} &\leq x_{vw} + x_{uw} & \forall u, v, w \in V \\ 0 &\leq x_{uv} \leq 1 & \forall u, v \in V \end{aligned}$$

Rounding algorithm by Kalhan, Makarychev, Zhou

Convex program relaxation **Don't solve this!**

Quantify probabilities $x_{\mu\nu}$ **combinatorially**

$$\begin{aligned} y(u) &= \sum_{v \in N_u^+} x_{uv} + \sum_{v \in N_u^-} (1 - x_{uv}) & \forall u \in V \\ x_{uv} &\leq x_{vw} + x_{uw} & \forall u, v, w \in V \\ 0 &\leq x_{uv} \leq 1 & \forall u, v \in V \end{aligned}$$

Input <u>correlation metric</u> d, an apx for x^*

Rounding algorithm by Kalhan, Makarychev, Zhou

Convex program relaxation **Don't solve this!**

Quantify probabilities $x_{\mu\nu}$ combinatorially

$$\begin{aligned} y(u) &= \sum_{v \in N_u^+} x_{uv} + \sum_{v \in N_u^-} (1 - x_{uv}) & \forall u \in V \\ x_{uv} &\leq x_{vw} + x_{uw} & \forall u, v, w \in V \\ 0 &\leq x_{uv} \leq 1 & \forall u, v \in V \end{aligned}$$

Desiderata for correlation metric d for ℓ_p :

Input <u>correlation metric</u> d, an apx for x^*

Rounding algorithm by Kalhan, Makarychev, Zhou

Convex program relaxation **Don't solve this!**

Quantify probabilities $x_{\mu\nu}$ **combinatorially**

$$y(u) = \sum_{v \in N_u^+} x_{uv} + \sum_{v \in N_u^-} (1 - x_{uv}) \quad \forall u \in V$$

$$x_{uv} \le x_{vw} + x_{uw} \quad \forall u, v, w \in V$$

$$0 \le x_{uv} \le 1 \quad \forall u, v \in V$$

Desiderata for correlation metric d for ℓ_p :

Input <u>correlation metric</u> d, an apx for x^*

Rounding algorithm by Kalhan, Makarychev, Zhou

Convex program relaxation **Don't solve this!**

Quantify probabilities $x_{\mu\nu}$ **combinatorially**

$$y(u) = \sum_{v \in N_u^+} x_{uv} + \sum_{v \in N_u^-} (1 - x_{uv}) \quad \forall u \in V$$

$$(x_{uv} \le x_{vw} + x_{uw}) \quad \forall u, v, w \in V$$

$$0 \le x_{uv} \le 1 \quad \forall u, v \in V$$

Desiderata for correlation metric d for ℓ_p :

(1) satisfies triangle inequality

Input <u>correlation metric</u> d, an apx for x^*

Rounding algorithm by Kalhan, Makarychev, Zhou

Convex program relaxation **Don't solve this!**

Quantify probabilities $X_{\mu\nu}$ **combinatorially**

$$y(u) = \sum_{v \in N_u^+} x_{uv} + \sum_{v \in N_u^-} (1 - x_{uv}) \quad \forall u \in V$$

$$(x_{uv} \le x_{vw} + x_{uw}) \quad \forall u, v, w \in V$$

$$0 \le x_{uv} \le 1 \quad \forall u, v \in V$$

Desiderata for correlation metric d for ℓ_p :

(1) satisfies triangle inequality

Input correlation metric d, an apx for x^*

Rounding algorithm by Kalhan, Makarychev, Zhou

Convex program relaxation **Don't solve this!**

Quantify probabilities $X_{\mu\nu}$ **combinatorially**

Lower bound on $\min \|y\|_p$ (integral) OPT $y(u) = \sum x_{uv} + \sum (1 - x_{uv})$ $\forall u \in V$ $v \in N_u^+$ $v \in N_u^$ $x_{uv} \le x_{vw} + x_{uw}$ $\forall u, v, w \in V$ $0 \le x_{uv} \le 1$ $\forall u, v \in V$

Input <u>correlation metric</u> d, an apx for x^*

Rounding algorithm by Kalhan, Makarychev, Zhou

Convex program relaxation Don't solve this!

Quantify probabilities $x_{\mu\nu}$ combinatorially

Lower bound on $\min \|y\|_p$ (integral) OPT $y(u) = \sum x_{uv} + \sum (1 - x_{uv}) \qquad \forall u \in V$ $v \in N_u^+$ $v \in N_u^$ $x_{uv} \le x_{vw} + x_{uw}$ $\forall u, v, w \in V$ $0 \le x_{uv} \le 1$ $\forall u, v \in V$

frac. cost of $d = \ell_p$ -norm of (fractional) disagreements

Input <u>correlation metric</u> d, an apx for x^*

Rounding algorithm by Kalhan, Makarychev, Zhou

Convex program relaxation **Don't solve this!**

Quantify probabilities $x_{\mu\nu}$ **combinatorially**

Lower bound on $\min \|y\|_p$ (integral) OPT $y(u) = \sum x_{uv} + \sum (1 - x_{uv}) \qquad \forall u \in V$ $v \in N_u^+$ $v \in N_u^$ $x_{uv} \le x_{vw} + x_{uw}$ $\forall u, v, w \in V$ $0 \le x_{uv} \le 1$ $\forall u, v \in V$

frac. cost of $d = \ell_p$ -norm of (fractional) disagreements

Input <u>correlation metric</u> d, an apx for x^*

Rounding algorithm by Kalhan, Makarychev, Zhou

Convex program relaxation Don't solve this!

Quantify probabilities $x_{\mu\nu}$ combinatorially

Lower bound on $\min \|y\|_p$ (integral) OPT $y(u) = \sum x_{uv} + \sum (1 - x_{uv}) \qquad \forall u \in V$ $v \in N_u^+$ $v \in N_u^$ $x_{uv} \le x_{vw} + x_{uw}$ $\forall u, v, w \in V$ $0 \le x_{uv} \le 1$ $\forall u, v \in V$

► $N_u^+ = (+)$ neighbors of u, ► $N_u^- = (-)$ neighbors of u

►
$$N_u^+ = (+)$$
 neighbors of u
► $N_u^- = (-)$ neighbors of u

►
$$N_u^+ = (+)$$
 neighbors of u
► $N_u^- = (-)$ neighbors of u

Intuition: if u and v have large mixed nbhds relative to $|N_{u^+} \cup N_{v^+}|$, want them in different clusters

Correlation metric = $d_{uv} = 1 - \frac{|N_u^+ \cap N_v^+|}{|N_u^+ \cup N_v^+|} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$

Intuition: if u and v have large mixed nbhds relative to $|N_{u^+} \cup N_{v^+}|$, want them in different clusters

$$\frac{|N_u^+ \cap N_v^+|}{|N_u^+ \cup N_v^+|} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$\frac{|N_u^+ \cap N_v^+|}{|N_u^+ \cup N_v^+|} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Correlation metric = $d_{uv} = 1 - \frac{|N_u^+ \cap N_v^+|}{|N_u^+ \cup N_v^+|} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$

Rounding algorithm by Kalhan, Makarychev, Zhou

Rounding algorithm by Kalhan, Makarychev, Zhou

◆ The correlation metric (constructing a "guess" for the optimal solution to convex relaxation)

+Tweaking correlation metric for all ℓ_p -norms

Open questions

◆ The correlation metric (constructing a "guess" for the optimal solution to convex relaxation)

+Tweaking correlation metric for all ℓ_p -norms

Open questions

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Goal: find single clustering that is O(1)-apx for all ℓ_p -norms simultaneously

Key Idea 1: for regular graphs, correlation metric also O(1)-apxs all ℓ_p -norms!

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Goal: find single clustering that is O(1)-apx for all ℓ_p -norms simultaneously

Key Idea 1: for regular graphs, correlation metric also O(1)-apxs all ℓ_p -norms! + Proof via dual fitting when p = 1

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Key Idea 1: for regular graphs, correlation metric also O(1)-apxs all ℓ_p -norms!

- + Proof via dual fitting when p = 1
- Problem is when (+) subgraph is far from regular

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Key Idea 1: for regular graphs, correlation metric also O(1)-apxs all ℓ_p -norms!

- + Proof via dual fitting when p = 1
- Problem is when (+) subgraph is far from regular

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Key Idea 1: for *regular graphs*, correlation metric also O(1)-apxs all ℓ_p -norms!

- + Proof via dual fitting when p = 1
- Problem is when (+) subgraph is far from regular

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Key Idea 1: for *regular graphs*, correlation metric also O(1)-apxs all ℓ_p -norms!

- + Proof via dual fitting when p = 1
- Problem is when (+) subgraph is far from regular

 $d_{uv} = 2/3$ for all u, v in negative clique frac. cost of $d = \theta(n^2)$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Key Idea 2: for *positive edges*, correlation metric has *bounded cost for all p*!

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

 $\sum_{u \in V} \left(\sum_{v \in N_{u}^{+}} d_{uv} + \sum_{v \in N_{u}^{-}} (1 - d_{uv}) \right)^{p} \le O(1) \cdot \mathsf{OPT}_{p}$

Key Idea 2: for *positive edges*, correlation metric has *bounded cost for all p*!

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Q1: when $p \neq 1$, rounding may be good from *u*'s perspective, but what about *v*'s?

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Q1: when $p \neq 1$, rounding may be good from *u*'s perspective, but what about *v*'s?

A1: reduce to regular case when $d_{\mu\nu} \leq 1/4$, say in some average sense, *u* can charge to *v*

les out of
$$u$$
 to 1 \longrightarrow pay $|N_u^+|^p$ for

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Q2: how to pay for $|N_{\mu}^{+}|^{p}$ when you do round? how to pay for (-) edges when you do not?

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Q2: how to pay for $|N_{\mu}^{+}|^{p}$ when you do round? how to pay for (-) edges when you do not?

A2: non-local charging arguments

ges out of
$$u$$
 to 1 \longrightarrow pay $|N_u^+|^p$ for

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

Rounding algorithm by Kalhan, Makarychev, Zhou

round all $d_{\mu\nu}$ to 1 $\longrightarrow u$ now in own cluster

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

$$d_{uv} = \frac{|N_u^+ \cap N_v^-| + |N_u^- \cap N_v^+|}{|N_u^+ \cup N_v^+|}$$

◆ The correlation metric (constructing a "guess" for the optimal solution to convex relaxation)

+Tweaking correlation metric for **all** ℓ_p norms

Summary and open questions

ℓ_p -norm correlation clustering algs solve a convex program

Solving metric constrained LPs on large networks is slow!

ℓ_p -norm correlation clustering algs solve a convex program

large networks is slow!

Solution specific to one fixed l_p -norm

Combinatorial techniques can resolve these issues

Result 1: O(1)-apx alg with run-time $O(min\{n \cdot \Delta^2 \cdot \log n, n^\omega\})$. Near-linear for sparse graphs.

Result 1: O(1)-apx alg with run-time $O(min\{n \cdot \Delta^2 \cdot \log n, n^\omega\})$. Near-linear for sparse graphs.

Result 2: \exists an alg producing a clustering that is O(1)-apx for all ℓ_p -norms, simultaneously.

Result 2: \exists an alg producing a clustering that is O(1)-apx for all ℓ_p -norms, simultaneously.

Sometimes called *universality* property

Result 2: \exists an alg producing a clustering that is O(1)-apx for all ℓ_p -norms, simultaneously.

Sometimes called *universality* property

Correlation clustering has interesting combinatorial structure that can be exploited

 $\Delta = \max(+)$ degree of any vertex ω = matrix multiplication exponent

Sometimes called universality property

• Hot conjecture: Exists a combinatorial alg simultaneously 4approximating all ℓ_p -norms running in $O(n^{\omega})$ time

• **Hot conjecture:** Exists a combinatorial alg simultaneously 4approximating all ℓ_p -norms running in $O(n^{\omega})$ time

• **Hot conjecture:** Exists a combinatorial alg simultaneously 4approximating all ℓ_p -norms running in $O(n^{\omega})$ time

Broader Qs:

1. Combinatorial algorithms by designing "approximate LP solution"

Hot conjecture: Exists a combinatorial alg simultaneously 4approximating all l_p -norms running in $O(n^{\omega})$ time

Broader Qs:

- 1.
- 2. Non-constructive existence proof?

Combinatorial algorithms by designing "approximate LP solution"

Hot conjecture: Exists a combinatorial alg simultaneously 4approximating all l_p -norms running in $O(n^{\omega})$ time

Broader Qs:

- 2. Non-constructive existence proof?
- 3. Further study on the all-norms objective

1. Combinatorial algorithms by designing "approximate LP solution"
What's next?

Hot conjecture: Exists a combinatorial alg simultaneously 4approximating all l_p -norms running in $O(n^{\omega})$ time

Broader Qs:

- 2. Non-constructive existence proof?
- 3. Further study on the all-norms objective

1. Combinatorial algorithms by designing "approximate LP solution"

Thank you!

Thank you!

hanewman@andrew.cmu.edu

