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Upshot: competitive ratio must depend on aspect ratio A > n if choices are irrevocable
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Main Result: There is a (deterministic, poly-time) online algo that, given budget B,
irrevocably gives each point one of k labels on arrival, with cost O(k> - 3* - B).

Lower Bound: Dependence on k is necessary: cost = Q(k - B).
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¥ 3
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