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Maximizing Quality

 competitive ratioO(1)

Maximizing Consistency

no changes to centers (center-
based) or labels (cluster-based)

Upshot: competitive ratio must depend on aspect ratio  if choices are irrevocable Δ ≫ n

k = 2
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BUT! Lower bd  need some info a priori 

Given: “budget”  where   (final) 

Objective:  

➡No dependence on  or !


⟹
B B ≥ OPT

ALG ≤ f(k) ⋅ B
n Δ

Main Result: There is a (deterministic, poly-time) online algo that, given budget , 
irrevocably gives each point one of  labels on arrival, with cost .

B
k O(k5 ⋅ 3k ⋅ B)

Lower Bound: Dependence on  is necessary: cost = .k Ω(k ⋅ B)





Attempt 1: How to use ?B



Attempt 1: How to use ?B

Natural candidate greedy algo (using ): B



Attempt 1: How to use ?B

Natural candidate greedy algo (using ): B
give each data point the label minimizing increase in cost



Attempt 1: How to use ?B

Natural candidate greedy algo (using ): B
give each data point the label minimizing increase in cost

S.T. only use up to number of labels “justified” (w.r.t. )B



Attempt 1: How to use ?B

Natural candidate greedy algo (using ): B
give each data point the label minimizing increase in cost

S.T. only use up to number of labels “justified” (w.r.t. )B



Attempt 1: How to use ?B

Natural candidate greedy algo (using ): B
give each data point the label minimizing increase in cost

S.T. only use up to number of labels “justified” (w.r.t. )B

, k = 2 B = 2



Attempt 1: How to use ?B

Natural candidate greedy algo (using ): B
give each data point the label minimizing increase in cost

S.T. only use up to number of labels “justified” (w.r.t. )B

, k = 2 B = 2



Attempt 1: How to use ?B

Natural candidate greedy algo (using ): B
give each data point the label minimizing increase in cost

S.T. only use up to number of labels “justified” (w.r.t. )B

, k = 2 B = 2



Attempt 1: How to use ?B

Natural candidate greedy algo (using ): B
give each data point the label minimizing increase in cost

S.T. only use up to number of labels “justified” (w.r.t. )B

, k = 2 B = 2



Attempt 1: How to use ?B

Natural candidate greedy algo (using ): B
give each data point the label minimizing increase in cost

S.T. only use up to number of labels “justified” (w.r.t. )B

, k = 2 B = 2



Attempt 1: How to use ?B

Natural candidate greedy algo (using ): B
give each data point the label minimizing increase in cost

S.T. only use up to number of labels “justified” (w.r.t. )B

, k = 2 B = 2

Upshot: this algo can have unbounded cost! 



, k = 2 B = 2

Upshot: this algo can have unbounded cost! 



Can we still be greedy?

, k = 2 B = 2

Upshot: this algo can have unbounded cost! 



Can we still be greedy?

, k = 2 B = 2

Upshot: this algo can have unbounded cost! 

Q1: When to increase # labels?



Can we still be greedy?

, k = 2 B = 2

Upshot: this algo can have unbounded cost! 

Q1: When to increase # labels?
➡Wait for more evidence of where dense regions are?



Can we still be greedy?

, k = 2 B = 2

Upshot: this algo can have unbounded cost! 

Q1: When to increase # labels?
➡Wait for more evidence of where dense regions are?



Can we still be greedy?

, k = 2 B = 2

Upshot: this algo can have unbounded cost! 

Q1: When to increase # labels?
➡Wait for more evidence of where dense regions are?

Q2: Once we add label , how to partition space from  parts?t t − 1 → t



Can we still be greedy?

, k = 2 B = 2

Upshot: this algo can have unbounded cost! 

Q1: When to increase # labels?
➡Wait for more evidence of where dense regions are?

Q2: Once we add label , how to partition space from  parts?t t − 1 → t
➡Greedy = assign to “closest” part



Can we still be greedy?

, k = 2 B = 2

Upshot: this algo can have unbounded cost! 

Q1: When to increase # labels?
➡Wait for more evidence of where dense regions are?

Q2: Once we add label , how to partition space from  parts?t t − 1 → t
➡Greedy = assign to “closest” part



, k = 2 B = 2



Attempt 2: How to use ?B

, k = 2 B = 2



Attempt 2: How to use ?B

, k = 2 B = 2

Q1: When to increase 
#labels?

➡Wait for more evidence of 

where dense regions are?




Attempt 2: How to use ?B

, k = 2 B = 2

Q1: When to increase 
#labels?

➡Wait for more evidence of 

where dense regions are?


natural weight of :

 := max # pts whose total distance to  is 


p
w(p) p ≤ 2B



Attempt 2: How to use ?B

, k = 2 B = 2

natural weight of :

 := max # pts whose total distance to  is 


p
w(p) p ≤ 2BQ1: When to increase 

#labels?

➡Wait for more evidence of 

where dense regions are?




Attempt 2: How to use ?B

, k = 2 B = 2

natural weight of :

 := max # pts whose total distance to  is 


p
w(p) p ≤ 2B

 smallw(p)

Q1: When to increase 
#labels?

➡Wait for more evidence of 

where dense regions are?




Attempt 2: How to use ?B

, k = 2 B = 2

natural weight of :

 := max # pts whose total distance to  is 


p
w(p) p ≤ 2B

 smallw(p)  largew(p)

Q1: When to increase 
#labels?

➡Wait for more evidence of 

where dense regions are?




Attempt 2: How to use ?B

, k = 2 B = 2

natural weight of :

 := max # pts whose total distance to  is 


p
w(p) p ≤ 2B

 smallw(p)  largew(p)  largew(p)

Q1: When to increase 
#labels?

➡Wait for more evidence of 

where dense regions are?




Attempt 2: How to use ?B

, k = 2 B = 2

natural weight of :

 := max # pts whose total distance to  is 


p
w(p) p ≤ 2B

 smallw(p)  largew(p)  largew(p)

 are -well-separated if far in weighted sense :
x, y β
min{w(x), w(y)} ⋅ d(x, y) ≥ β ⋅ B

Q1: When to increase 
#labels?

➡Wait for more evidence of 

where dense regions are?




Attempt 2: How to use ?B

, k = 2 B = 2

natural weight of :

 := max # pts whose total distance to  is 


p
w(p) p ≤ 2B

 smallw(p)  largew(p)  largew(p)

 are -well-separated if far in weighted sense :
x, y β
min{w(x), w(y)} ⋅ d(x, y) ≥ β ⋅ B

Q1: When to increase 
#labels?

➡Wait for more evidence of 

where dense regions are?




Attempt 2: How to use ?B

, k = 2 B = 2

natural weight of :

 := max # pts whose total distance to  is 


p
w(p) p ≤ 2B

 smallw(p)  largew(p)  largew(p)

 are -well-separated if far in weighted sense :
x, y β
min{w(x), w(y)} ⋅ d(x, y) ≥ β ⋅ B

Q1: When to increase 
#labels?

➡Wait for more evidence of 

where dense regions are?




Attempt 2: How to use ?B

, k = 2 B = 2

natural weight of :

 := max # pts whose total distance to  is 


p
w(p) p ≤ 2B

 smallw(p)  largew(p)  largew(p)

 are -well-separated if far in weighted sense :
x, y β
min{w(x), w(y)} ⋅ d(x, y) ≥ β ⋅ B

Q1: When to increase 
#labels?

➡Wait for more evidence of 

where dense regions are?




Attempt 2: How to use ?B

, k = 2 B = 2

natural weight of :

 := max # pts whose total distance to  is 


p
w(p) p ≤ 2B

 smallw(p)  largew(p)  largew(p)

 are -well-separated if far in weighted sense :
x, y β
min{w(x), w(y)} ⋅ d(x, y) ≥ β ⋅ B

A1:  if  well-separated points   labels justified  use  labelst → t → t

Q1: When to increase 
#labels?

➡Wait for more evidence of 

where dense regions are?




Attempt 2: How to use ?B

Q1: When to increase # labels?

➡Wait for more evidence of where dense regions are?


A1:  if  well-separated points   labels justified  use  labelst → t → t



Attempt 2: How to use ?B

Q1: When to increase # labels?

➡Wait for more evidence of where dense regions are?


A1:  if  well-separated points   labels justified  use  labelst → t → t

Q2: Once we add label , how to partition space from  parts?

➡Greedy = assign to “closest” part

t t − 1 → t



Attempt 2: How to use ?B

Q1: When to increase # labels?

➡Wait for more evidence of where dense regions are?


A1:  if  well-separated points   labels justified  use  labelst → t → t

Q2: Once we add label , how to partition space from  parts?

➡Greedy = assign to “closest” part

t t − 1 → t



Attempt 2: How to use ?B

Q1: When to increase # labels?

➡Wait for more evidence of where dense regions are?


A1:  if  well-separated points   labels justified  use  labelst → t → t

Q2: Once we add label , how to partition space from  parts?

➡Greedy = assign to “closest” part

t t − 1 → t

A2:  each cluster (= pts w/ same label) has a representative called a pivot 



Attempt 2: How to use ?B

Q1: When to increase # labels?

➡Wait for more evidence of where dense regions are?


A1:  if  well-separated points   labels justified  use  labelst → t → t

Q2: Once we add label , how to partition space from  parts?

➡Greedy = assign to “closest” part

t t − 1 → t

A2:  each cluster (= pts w/ same label) has a representative called a pivot 
➡assign a point to the cluster of its closest pivot (do greedy)



Attempt 2: How to use ?B

Q1: When to increase # labels?

➡Wait for more evidence of where dense regions are?


A1:  if  well-separated points   labels justified  use  labelst → t → t

Q2: Once we add label , how to partition space from  parts?

➡Greedy = assign to “closest” part

t t − 1 → t

A2:  each cluster (= pts w/ same label) has a representative called a pivot 
➡assign a point to the cluster of its closest pivot (do greedy)
➡pivot does not change while #labels in use stays the same



Attempt 2: How to use ?B

Q1: When to increase # labels?

➡Wait for more evidence of where dense regions are?


A1:  if  well-separated points   labels justified  use  labelst → t → t

Q2: Once we add label , how to partition space from  parts?

➡Greedy = assign to “closest” part

t t − 1 → t

A2:  each cluster (= pts w/ same label) has a representative called a pivot 
➡assign a point to the cluster of its closest pivot (do greedy)
➡pivot does not change while #labels in use stays the same pivot  center≠



Attempt 2: How to use ?B

Q1: When to increase # labels?

➡Wait for more evidence of where dense regions are?


A1:  if  well-separated points   labels justified  use  labelst → t → t

Q2: Once we add label , how to partition space from  parts?

➡Greedy = assign to “closest” part

t t − 1 → t

A2:  each cluster (= pts w/ same label) has a representative called a pivot 
➡assign a point to the cluster of its closest pivot (do greedy)
➡pivot does not change while #labels in use stays the same
➡Invariant I: Pivots are always well-separated

pivot  center≠



Attempt 2: How to use ?B

Q1: When to increase # labels?

➡Wait for more evidence of where dense regions are?


A1:  if  well-separated points   labels justified  use  labelst → t → t

Q2: Once we add label , how to partition space from  parts?

➡Greedy = assign to “closest” part

t t − 1 → t

A2:  each cluster (= pts w/ same label) has a representative called a pivot 
➡assign a point to the cluster of its closest pivot (do greedy)
➡pivot does not change while #labels in use stays the same
➡Invariant I: Pivots are always well-separated
➡Invariant II: No already arrived point is well-separated from existing pivots

pivot  center≠



Attempt 2: How to use ?B

Q1: When to increase # labels?

➡Wait for more evidence of where dense regions are?


A1:  if  well-separated points   labels justified  use  labelst → t → t

Q2: Once we add label , how to partition space from  parts?

➡Greedy = assign to “closest” part

t t − 1 → t

A2:  each cluster (= pts w/ same label) has a representative called a pivot 
➡assign a point to the cluster of its closest pivot (do greedy)
➡pivot does not change while #labels in use stays the same
➡Invariant I: Pivots are always well-separated
➡Invariant II: No already arrived point is well-separated from existing pivots

pivot  center≠





Pivots: Some Subtleties…



Pivots: Some Subtleties…

good representative 
for cluster (pivot)



Pivots: Some Subtleties…

VS.
good representative 

for cluster (pivot)
good center for 

cluster 



Pivots: Some Subtleties…

VS.
good representative 

for cluster (pivot)
good center for 

cluster 

recruit pts to 
right region 



Pivots: Some Subtleties…

VS.
good representative 

for cluster (pivot)
good center for 

cluster 

recruit pts to 
right region 

low cost w.r.t 
obj. fn. 



Pivots: Some Subtleties…

VS.
good representative 

for cluster (pivot)
good center for 

cluster 

recruit pts to 
right region 

low cost w.r.t 
obj. fn. 

However: centers do come into play when we increase #pivots




Pivots: Some Subtleties…

VS.
good representative 

for cluster (pivot)
good center for 

cluster 

recruit pts to 
right region 

low cost w.r.t 
obj. fn. 

However: centers do come into play when we increase #pivots




Pivots: Some Subtleties…

VS.
good representative 

for cluster (pivot)
good center for 

cluster 

recruit pts to 
right region 

low cost w.r.t 
obj. fn. 

However: centers do come into play when we increase #pivots




Pivots: Some Subtleties…



Pivots: Some Subtleties…

Upshot: need to handle delicately



Pivots: Some Subtleties…

Upshot: need to handle delicately
1) which locations to add to set of pivots



Pivots: Some Subtleties…

Upshot: need to handle delicately
1) which locations to add to set of pivots
2) which labels are given to which pivots 



Pivots: Some Subtleties…

Upshot: need to handle delicately
1) which locations to add to set of pivots
2) which labels are given to which pivots 

by incorporating information about centers 



Pivots: Some Subtleties…

Upshot: need to handle delicately
1) which locations to add to set of pivots
2) which labels are given to which pivots 

by incorporating information about centers 



Conclusion



Conclusion

Main Result: There is a (deterministic, poly-time) online algo that, given budget , 
irrevocably gives each point one of  labels on arrival, with cost .

B
k O(k5 ⋅ 3k ⋅ B)



Conclusion

Main Result: There is a (deterministic, poly-time) online algo that, given budget , 
irrevocably gives each point one of  labels on arrival, with cost .

B
k O(k5 ⋅ 3k ⋅ B)

First algorithm with bounded competitive ratio that does 
not recluster or use more centers



Conclusion

Main Result: There is a (deterministic, poly-time) online algo that, given budget , 
irrevocably gives each point one of  labels on arrival, with cost .

B
k O(k5 ⋅ 3k ⋅ B)

First algorithm with bounded competitive ratio that does 
not recluster or use more centers



Conclusion

Main Result: There is a (deterministic, poly-time) online algo that, given budget , 
irrevocably gives each point one of  labels on arrival, with cost .

B
k O(k5 ⋅ 3k ⋅ B)

First algorithm with bounded competitive ratio that does 
not recluster or use more centers

First cluster-based algorithm



Conclusion

Main Result: There is a (deterministic, poly-time) online algo that, given budget , 
irrevocably gives each point one of  labels on arrival, with cost .

B
k O(k5 ⋅ 3k ⋅ B)

First algorithm with bounded competitive ratio that does 
not recluster or use more centers

First cluster-based algorithm



Conclusion

Main Result: There is a (deterministic, poly-time) online algo that, given budget , 
irrevocably gives each point one of  labels on arrival, with cost .

B
k O(k5 ⋅ 3k ⋅ B)

First algorithm with bounded competitive ratio that does 
not recluster or use more centers

First cluster-based algorithm

Not previously known whether such an algorithm could 
have bounded worst-case guarantees



Conclusion

Main Result: There is a (deterministic, poly-time) online algo that, given budget , 
irrevocably gives each point one of  labels on arrival, with cost .

B
k O(k5 ⋅ 3k ⋅ B)

First algorithm with bounded competitive ratio that does 
not recluster or use more centers

First cluster-based algorithm

Not previously known whether such an algorithm could 
have bounded worst-case guarantees



Conclusion

Main Result: There is a (deterministic, poly-time) online algo that, given budget , 
irrevocably gives each point one of  labels on arrival, with cost .

B
k O(k5 ⋅ 3k ⋅ B)

First algorithm with bounded competitive ratio that does 
not recluster or use more centers

First cluster-based algorithm

Not previously known whether such an algorithm could 
have bounded worst-case guarantees

Open q: find optimal dependence on k



Conclusion

Main Result: There is a (deterministic, poly-time) online algo that, given budget , 
irrevocably gives each point one of  labels on arrival, with cost .

B
k O(k5 ⋅ 3k ⋅ B)

First algorithm with bounded competitive ratio that does 
not recluster or use more centers

First cluster-based algorithm

Not previously known whether such an algorithm could 
have bounded worst-case guarantees

Open q: find optimal dependence on k



Thank You
hanewman@andrew.cmu.edu


