Online k-Median with Consistent Clusters

Heather Newman (Carnegie Mellon) APPROX 2024

Joint work with: Benjamin Moseley (Carnegie Mellon) and Kirk Pruhs (U. of Pittsburgh)

- $x_1, ..., x_n$ lying in metric space (small) k =#clusters = #labels
- Input:

 $\min \sum_{i=1}^{k} \sum_{x_j \in C_i} d(x_j, c_i)$

 x_1, \ldots, x_n lyin (small) k = #

- Input:
- x_1, \ldots, x_n lying in metric space
- (small) *k* = #clusters = #labels

 $\min \sum_{i=1}^k \sum_{x_j \in C_i} d(x_j, c_i)$

 x_1, \ldots, x_n lying in metric space

Input:

- (small) k = #clusters = #labels
- **Two perspectives on output**

 $\min \sum_{i=1}^k \sum_{x_j \in C_i} d(x_j, c_i)$

 x_1, \ldots, x_n lying in metric space

Two perspectives on output

Center-based clustering

Input:

÷					
2 H					
2.1					
1.1					

 $\min \sum_{i=1}^{k} \sum_{x_j \in C_i} d(x_j, c_i)$

 x_1, \ldots, x_n lying in metric space

Two perspectives on output

Center-based clustering

• <u>Output: centers</u> c_1, \ldots, c_k

Input:

÷					
2 H					
2.1					
1.1					

 $\min \sum_{i=1}^k \sum_{x_j \in C_i} d(x_j, c_i)$

 x_1, \ldots, x_n lying in metric space

Two perspectives on output

Center-based clustering

- <u>Output: centers</u> c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Input:

÷					
2 - A					
2.1					
- C					

 $\min \sum_{i=1}^k \sum_{x_j \in C_i} d(x_j, c_i)$

 x_1, \ldots, x_n lying in metric space

Two perspectives on output

Center-based clustering

- <u>Output: centers</u> c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Input:

÷					
2 - A					
2.1					
1.1					

 $\min \sum_{i=1}^k \sum_{x_j \in C_i} d(x_j, c_i)$

 x_1, \ldots, x_n lying in metric space

Two perspectives on output

Center-based clustering

- <u>Output: centers</u> c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Input:

÷					
2 - A					
2.1					
- C					

 $\min \sum_{i=1}^k \sum_{x_j \in C_i} d(x_j, c_i)$

 x_1, \ldots, x_n lying in metric space

Two perspectives on output

Center-based clustering

- Output: centers c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Input:

(small) *k* = #clusters = #labels

 $\min \sum_{i=1}^{k} \sum_{x_i \in C_i} d(x_i, c_i)$

 x_1, \ldots, x_n lying in metric space

Two perspectives on output

Center-based clustering

- Output: centers c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Input:

(small) *k* = #clusters = #labels

• Output: clusters C_1, \ldots, C_k

 $\min \sum_{i=1}^{k} \sum_{x_i \in C_i} d(x_i, c_i)$

 x_1, \ldots, x_n lying in metric space

Two perspectives on output

Center-based clustering

- Output: centers c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Input:

- Output: clusters C_1, \ldots, C_k
- Centers c_i implicit

 $\min \sum_{i=1}^{k} \sum_{x_i \in C_i} d(x_i, c_i)$

 x_1, \ldots, x_n lying in metric space

Two perspectives on output

Center-based clustering

- Output: centers c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Input:

- Output: clusters C_1, \ldots, C_k
- Centers c_i implicit

 $\min \sum_{i=1}^{k} \sum_{x_i \in C_i} d(x_i, c_i)$

 x_1, \ldots, x_n lying in metric space

Two perspectives on output

Center-based clustering

- Output: centers c_1, \ldots, c_k
- Clusters C_i (points labelled i) implicit

Constant-factor approximations exist

Input:

- Output: clusters C_1, \ldots, C_k
- Centers c_i implicit

 $\min \sum_{i=1}^k \sum_{x_i \in C_i} d(x_i, c_i)$

 $x_1, ..., x_n$ lying in metric space (small) k = #clusters = #labels

Two perspectives on output

Center-based clustering

- Output: centers c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Input:

(offline)

- Output: clusters C_1, \ldots, C_k
- Centers c_i implicit

Online Offline *k*-Median

 $\min \sum_{i=1}^k \sum_{x_i \in C_i} d(x_i, c_i)$

 x_1, \ldots, x_n lying in metric space

Two perspectives on output

Center-based clustering

- Output: centers c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Input:

(small) *k* = #clusters = #labels

- Output: clusters C_1, \ldots, C_k
- Centers c_i implicit

 $\min \sum_{i=1}^k \sum_{x_i \in C_i} d(x_i, c_i)$

 x_1, \ldots, x_n lying in metric space

Two perspectives on output

Center-based clustering

- Output: centers c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Input:

(small) *k* = #clusters = #labels

- Output: clusters C_1, \ldots, C_k
- Centers c_i implicit

 $\min \sum_{i=1}^k \sum_{x_i \in C_i} d(x_i, c_i)$

 x_1, \ldots, x_n lyin

Two perspectives on output

Center-based clustering

- Output: centers c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Input:

x_1, \ldots, x_n lying in metric space arrive over time

(small) *k* = #clusters = #labels

- Output: clusters C_1, \ldots, C_k
- Centers c_i implicit

 $\min \sum_{i=1}^k \sum_{x_i \in C_i} d(x_i, c_i)$

 x_1, \ldots, x_n lyin

Two perspectives on output

Center-based clustering

- Output: centers c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Decide if x_i center on arrival

Input:

x_1, \ldots, x_n lying in metric space arrive over time

(small) *k* = #clusters = #labels

- Output: clusters C_1, \ldots, C_k
- Centers c_i implicit

 $\min \sum_{i=1}^{k} \sum_{x_i \in C_i} d(x_j, c_i)$

 x_1, \ldots, x_n lyin

Two perspectives on output

Center-based clustering

- Output: centers c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Decide if x_i center on arrival

Input:

x_1, \ldots, x_n lying in metric space arrive over time

(small) *k* = #clusters = #labels

Cluster-based clustering

- Output: clusters C_1, \ldots, C_k
- Centers c_i implicit

Center-based clustering

- Output: centers c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Decide if x_i a center on arrival

Cluster-based clustering

- <u>Output:</u> clusters C_1, \ldots, C_k
- Centers c_i implicit

Center-based clustering

- <u>Output: centers c_1, \ldots, c_k </u>
- Clusters C_i (points labelled *i*) implicit

Decide if x_i a center on arrival

Cluster-based clustering

- <u>Output:</u> clusters C_1, \ldots, C_k
- Centers c_i implicit

Center-based clustering

- Output: centers c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Decide if x_i a center on arrival

Maximizing Consistency no changes to centers (centerbased) or labels (cluster-based)

Cluster-based clustering

- Output: clusters C_1, \ldots, C_k
- Centers c_i implicit

Center-based clustering

- Output: centers c_1, \ldots, c_k
- Clusters C_i (points labelled *i*) implicit

Decide if x_i a center on arrival

Maximizing Consistency no changes to centers (centerbased) or labels (cluster-based)

Cluster-based clustering

- Output: clusters C_1, \ldots, C_k
- Centers c_i implicit

Upshot: competitive ratio must depend on aspect ratio $\Delta \gg n$ if choices are irrevocable

Maximizing Quality

Maximizing Consistency

Maximizing Quality

Maximizing Consistency

Beyond worst-case approaches?

Maximizing Quality

Beyond worst-case approaches?

Maximizing Consistency

Maximizing Quality

Beyond worst-case approaches?

Maximizing Consistency

Resource Augmentation (Liberty et. al., '16)

Maximizing Quality

Beyond worst-case approaches?

Maximizing Consistency

Resource Augmentation (Liberty et. al., '16)

• > k centers, i.e., bi-criteria approx.

Maximizing Quality

Beyond worst-case approaches?

Maximizing Consistency

Resource Augmentation (Liberty et. al., '16)

- > k centers, i.e., bi-criteria approx.
- $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Maximizing Quality

Beyond worst-case approaches?

Maximizing Consistency

Resource Augmentation (Liberty et. al., '16)

- $\cdot > k$ centers, i.e., bi-criteria approx.
- $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Recourse (Lattanzi & Vassilvitskii, '17;

Maximizing Quality

Beyond worst-case approaches?

Maximizing Consistency

Resource Augmentation (Liberty et. al., '16)

- $\cdot > k$ centers, i.e., bi-criteria approx.
- $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Maximizing Quality

Beyond worst-case approaches?

Maximizing Consistency

Resource Augmentation (Liberty et. al., '16)

- $\cdot > k$ centers, i.e., bi-criteria approx.
- $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Recourse (Lattanzi & Vassilvitskii, '17; Fichtenberger et. al., '21)

• Change centers small number of times

Maximizing Quality

Beyond worst-case approaches?

Maximizing Consistency

Resource Augmentation (Liberty et. al., '16)

- > k centers, i.e., bi-criteria approx.
- $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

- Change centers small number of times
- O(1)-competitive, $O(k \operatorname{poly} \log(n\Delta))$ center **changes**

Maximizing Quality

Beyond worst-case approaches?

Maximizing Consistency

Resource Augmentation (Liberty et. al., '16)

- > k centers, i.e., bi-criteria approx.
- $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

- Change centers small number of times
- O(1)-competitive, $O(k \operatorname{poly} \log(n\Delta))$ center changes

Maximizing Quality

Both use a randomized subroutine for online facility location (Meyerson '01)

Maximizing Consistency

Beyond worst-case approaches?

Resource Augmentation (Liberty et. al., '16)

- $\cdot > k$ centers, i.e., bi-criteria approx.
- $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

- Change centers small number of times
- O(1)-competitive, $O(k \operatorname{poly} \log(n\Delta))$ center changes

Maximizing Quality

Beyond worst-case approaches?

Resource Augmentation (Liberty et. al., '16)

- > *k* centers, i.e., bi-criteria approx.
- $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Recourse (Lattanzi & Vassilvitskii, '17)

- Change centers small number of times
- O(1)-competitive, $O(k^2 \log^4 n\Delta)$ center **changes**

Maximizing Quality

Maximizing Consistency

Beyond worst-case approaches?

Resource Augmentation (Liberty et. al., '16)

- $\cdot > k$ centers, i.e., bi-criteria approx.
- $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Recourse (Lattanzi & Vassilvitskii, '17) • Change centers small number of times

Maximizing Quality

Maximizing Consistency

Beyond worst-case approaches?

Resource Augmentation (Liberty et. al., '16)

- $\cdot > k$ centers, i.e., bi-criteria approx.
- $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Recourse (Lattanzi & Vassilvitskii, '17) • Change centers small number of times

Maximizing Quality

Maximizing Consistency

Beyond worst-case approaches?

Resource Augmentation (Liberty et. al., '16)

- $\cdot > k$ centers, i.e., bi-criteria approx.
- $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Recourse (Lattanzi & Vassilvitskii, '17) • Change centers small number of times

Maximizing Quality

Maximizing Consistency

Beyond worst-case approaches?

Resource Augmentation (Liberty et. al., '16) • > $k \operatorname{cer}$ Use at most k labels X. • $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Recourse (Lattanzi & Vassilvitskii, '17) • Change centers small number of times

Maximizing Quality

Beyond worst-case approaches?

Resource Augmentation (Liberty et. al., '16) • > $k \operatorname{cer}$ Use at most k labels X. • $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Recourse (Lattanzi & Vassilvitskii, '17) •Change Never relabel points imes • O(1)-competitive, $O(k^2 \log n\Delta)$ center changes

BUT! Lower bd \implies need some info *a priori*

Our Work: <u>Consistent</u> Online k-Median

Beyond worst-case approaches?

Resource Augmentation (Liberty et. al., '16) • > $k \operatorname{cer}$ Use at most k labels X. • $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Recourse (Lattanzi & Vassilvitskii, '17) • Change Never relabel points imes • O(1)-competitive, $O(k^2 \log n\Delta)$ center changes

BUT! Lower bd \implies need some info *a priori* <u>Given:</u> "budget" *B* where $B \ge$ (final) OPT

Our Work: <u>Consistent</u> Online k-Median

Beyond worst-case approaches?

Resource Augmentation (Liberty et. al., '16) • > $k \operatorname{cer}$ Use at most k labels X. • $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Recourse (Lattanzi & Vassilvitskii, '17) • Change Never relabel points mes • O(1)-competitive, $O(k^2 \log n\Delta)$ center changes

Our Work: <u>Consistent</u> Online k-Median

Beyond worst-case approaches?

Resource Augmentation (Liberty et. al., '16) • > $k \operatorname{cer}$ Use at most k labels X. • $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Recourse (Lattanzi & Vassilvitskii, '17) • Change Never relabel points imes • O(1)-competitive, $O(k^2 \log n\Delta)$ center changes

Our Work: <u>Consistent</u> Online k-Median

Beyond worst-case approaches?

Resource Augmentation (Liberty et. al., '16) • > $k \operatorname{cer}$ Use at most k labels X. • $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Recourse (Lattanzi & Vassilvitskii, '17) Change Never relabel points imes • O(1)-competitive, $O(k^2 \log n\Delta)$ center changes

Our Work: <u>Consistent</u> Online k-Median

Beyond worst-case approaches?

Resource Augmentation (Liberty et. al., '16) • > $k \operatorname{cer}$ Use at most k labels X. • $O(\log n)$ -competitive, $O(k \log n \log n\Delta)$ centers

Recourse (Lattanzi & Vassilvitskii, '17) Change Never relabel points imes • O(1)-competitive, $O(k^2 \log n\Delta)$ center changes

Our Work: <u>Consistent</u> Online k-Median

Beyond worst-case approaches?

Our Work: <u>Consistent</u> Online k-Median

Beyond worst-case approaches?

Our Work: <u>Consistent</u> Online k-Median

Beyond worst-case approaches?

Why *B***?** • Learn scale of costs

Our Work: <u>Consistent</u> Online k-Median

Beyond worst-case approaches?

- Learn **scale** of costs
- •Minimal information about instance

Our Work: <u>Consistent</u> Online k-Median

Beyond worst-case approaches?

- Learn **scale** of costs
- Minimal information about instance
- •Natural information about instance

Our Work: <u>Consistent</u> Online k-Median

Maximizing Consistency

Beyond worst-case approaches?

Why *B***?**

- Learn **scale** of costs
- •Minimal information about instance
- •Natural information about instance

Prior techniques (Meyerson) help?

Our Work: <u>Consistent</u> Online k-Median

Maximizing Consistency

Beyond worst-case approaches?

Why *B***?**

- Learn **scale** of costs
- Minimal information about instance
- •Natural information about instance

Prior techniques (Meyerson) help? Seemingly no

Cluster-based clustering

BUT! Lower bd \implies need some info *a priori* <u>Given:</u> "budget" *B* where $B \ge$ (final) OPT <u>Objective</u>: ALG $\leq f(k) \cdot B$ **No dependence** on *n* or Δ !

- Learn scale of costs
- •Minimal information about instance
- •Natural information about instance

irrevocably gives each point one of k labels on arrival, with cost $O(k^5 \cdot 3^k \cdot B)$.

Cluster-based clustering

BUT! Lower bd \implies need some info *a priori* <u>Given:</u> "budget" *B* where $B \ge$ (final) OPT <u>Objective</u>: ALG $\leq f(k) \cdot B$ **No dependence** on *n* or Δ !

Our Work: <u>Consistent</u> Online k-Median

Main Result: There is a (deterministic, poly-time) online algo that, given budget B,

- Learn scale of costs
- •Minimal information about instance
- Natural information about instance

irrevocably gives each point one of k labels on arrival, with cost $O(k^5 \cdot 3^k \cdot B)$.

Lower Bound: Dependence on k is <u>necessary</u>: cost = $\Omega(k \cdot B)$.

Cluster-based clustering

BUT! Lower bd \implies need some info *a priori* <u>Given:</u> "budget" *B* where $B \ge$ (final) OPT <u>Objective</u>: ALG $\leq f(k) \cdot B$ **No dependence** on *n* or Δ !

Our Work: <u>Consistent</u> Online k-Median

Main Result: There is a (deterministic, poly-time) online algo that, given budget B,

- Learn scale of costs
- •Minimal information about instance
- Natural information about instance

Attempt 1: How to use *B*?

Natural candidate greedy algo (using *B*):

Attempt 1: How to use *B*?

Natural candidate greedy algo (using *B*): give each data point the label minimizing increase in cost

$$k = 2, B = 2$$
(1)
$$-2$$

$$k = 2, B = 2$$
(1)
$$-2$$

$$k = 2, B = 2$$
(1)
$$-2$$

Upshot: this algo can have unbounded cost!

Q1: When to increase # labels?

Upshot: this algo can have unbounded cost!

Can we still be greedy?

Upshot: this algo can have unbounded cost!

Can we still be greedy?

Q1: When to increase # labels? • Wait for more evidence of where **dense regions** are?

Q2: Once we add label t, how to partition space from $t - 1 \rightarrow t$ parts?

Q1: When to increase # labels? • Wait for more evidence of where **dense regions** are?

Greedy = assign to "closest" part

Upshot: this algo can have unbounded cost!

Q1: When to increase # labels? • Wait for more evidence of where **dense regions** are?

Greedy = assign to "closest" part

Upshot: this algo can have unbounded cost!

natural weight of *p*: $w(p) := \max \# \text{ pts whose total distance to } p \text{ is } \leq 2B$

(1)

-2

natural weight of p: $w(p) := \max \# \text{ pts whose total distance to } p \text{ is } \leq 2B$

natural weight of *p*: $w(p) := \max \# \text{ pts whose total distance to } p \text{ is } \leq 2B$

w(p) small

(1)

-2

(1)

-2

w(p) small

natural weight of *p*: $w(p) := \max \# \text{ pts whose total distance to } p \text{ is } \leq 2B$

(1)

-2

w(p) small

natural weight of *p*: $w(p) := \max \# \text{ pts whose total distance to } p \text{ is } \leq 2B$

(1)

w(p) small

$$w(p) := m$$

$$x, y$$
 are β

$$k = 2, B = 2$$

Attempt 2: How to use B?

natural weight of *p*: hax # pts whose total distance to p is $\leq 2B$

3-well-separated if far in weighted sense : $\min\{w(x), w(y)\} \cdot d(x, y) \ge \beta \cdot B$

Attempt 2: How to use B?

natural weight of *p*: $w(p) := \max \# \text{ pts whose total distance to } p \text{ is } \leq 2B$

x, y are β -well-separated if far in weighted sense : $\min\{w(x), w(y)\} \cdot d(x, y) \ge \beta \cdot B$

Attempt 2: How to use B?

natural weight of *p*: $w(p) := \max \# \text{ pts whose total distance to } p \text{ is } \leq 2B$

x, y are β -well-separated if far in weighted sense : $\min\{w(x), w(y)\} \cdot d(x, y) \ge \beta \cdot B$

Attempt 2: How to use B?

natural weight of *p*: $w(p) := \max \# \text{ pts whose total distance to } p \text{ is } \leq 2B$

x, y are β -well-separated if far in weighted sense : $\min\{w(x), w(y)\} \cdot d(x, y) \ge \beta \cdot B$

Attempt 2: How to use B?

natural weight of *p*: $w(p) := \max \# pts$ whose total distance to p is $\leq 2B$

x, y are β -well-separated if far in weighted sense : $\min\{w(x), w(y)\} \cdot d(x, y) \ge \beta \cdot B$

A1: if t well-separated points $\rightarrow t$ labels justified \rightarrow use t labels

Greedy = assign to "closest" part

Attempt 2: How to use B?

Q2: Once we add label *t*, how to partition space from $t - 1 \rightarrow t$ parts? Greedy = assign to "closest" part

A1: if *t* well-separated points $\rightarrow t$ labels justified \rightarrow use *t* labels

Greedy = assign to "closest" part

A2: each cluster (= pts w/ same label) has a representative called a pivot

Attempt 2: How to use B?

A1: if *t* well-separated points $\rightarrow t$ labels justified \rightarrow use *t* labels

Greedy = assign to "closest" part

A2: each cluster (= pts w/ same label) has a representative called a pivot assign a point to the cluster of its closest pivot (do greedy)

Attempt 2: How to use B?

A1: if *t* well-separated points $\rightarrow t$ labels justified \rightarrow use *t* labels

Greedy = assign to "closest" part

A2: each cluster (= pts w/ same label) has a representative called a pivot assign a point to the cluster of its closest pivot (do greedy) Pivot does not change while #labels in use stays the same

Attempt 2: How to use B?

A1: if *t* well-separated points $\rightarrow t$ labels justified \rightarrow use *t* labels

Greedy = assign to "closest" part

A2: each cluster (= pts w/ same label) has a representative called a pivot assign a point to the cluster of its closest pivot (do greedy) Pivot does not change while #labels in use stays the same pivot \neq center

Attempt 2: How to use B?

A1: if *t* well-separated points $\rightarrow t$ labels justified \rightarrow use *t* labels

Greedy = assign to "closest" part

A2: each cluster (= pts w/ same label) has a representative called a pivot assign a point to the cluster of its closest pivot (do greedy) Pivot does not change while #labels in use stays the same pivot \neq center Invariant I: Pivots are always well-separated

Attempt 2: How to use B?

A1: if *t* well-separated points $\rightarrow t$ labels justified \rightarrow use *t* labels

Greedy = assign to "closest" part

A2: each cluster (= pts w/ same label) has a representative called a pivot assign a point to the cluster of its closest pivot (do greedy) Pivot does not change while #labels in use stays the same pivot \neq center Invariant I: Pivots are always well-separated **Invariant II:** No already arrived point is well-separated from existing pivots

Attempt 2: How to use B?

A1: if *t* well-separated points $\rightarrow t$ labels justified \rightarrow use *t* labels

Greedy = assign to "closest" part

A2: each cluster (= pts w/ same label) has a representative called a pivot assign a point to the cluster of its closest pivot (do greedy) Pivot does not change while #labels in use stays the same pivot \neq center Invariant I: Pivots are always well-separated **Invariant II:** No already arrived point is well-separated from existing pivots

Attempt 2: How to use B?

good representative for cluster (pivot)

good representative for cluster (pivot)

VS.

good center for cluster

recruit pts to right region

good representative for cluster (pivot)

VS.

good center for cluster

recruit pts to right region

good representative for cluster (pivot)

VS.

good center for cluster

recruit pts to right region

good representative for cluster (pivot)

However: centers *do* come into play when we increase #pivots

good center for cluster

recruit pts to right region

good representative for cluster (pivot)

However: centers *do* come into play when we increase #pivots

good center for cluster

recruit pts to right region

good representative for cluster (pivot)

However: centers *do* come into play when we increase #pivots

good center for cluster

= not well-separated

Upshot: need to handle delicately

= not well-separated

Upshot: need to handle delicately 1) which locations to add to set of pivots

= well-separated

= not well-separated

Upshot: need to handle delicately 1) which locations to add to set of pivots 2) which labels are given to which pivots

= well-separated

= not well-separated

Upshot: need to handle delicately 1) which locations to add to set of pivots 2) which labels are given to which pivots by incorporating information about centers

= well-separated

= not well-separated

Upshot: need to handle delicately 1) which locations to add to set of pivots 2) which labels are given to which pivots by incorporating information about centers

irrevocably gives each point one of k labels on arrival, with cost $O(k^5 \cdot 3^k \cdot B)$.

irrevocably gives each point one of k labels on arrival, with cost $O(k^5 \cdot 3^k \cdot B)$.

o First algorithm with bounded competitive ratio that does not recluster or use more centers

irrevocably gives each point one of k labels on arrival, with cost $O(k^5 \cdot 3^k \cdot B)$.

o First algorithm with bounded competitive ratio that does not recluster or use more centers

irrevocably gives each point one of k labels on arrival, with cost $O(k^5 \cdot 3^k \cdot B)$.

o First algorithm with bounded competitive ratio that does not recluster or use more centers

o First cluster-based algorithm

irrevocably gives each point one of k labels on arrival, with cost $O(k^5 \cdot 3^k \cdot B)$.

o First algorithm with bounded competitive ratio that does not recluster or use more centers

o First cluster-based algorithm

irrevocably gives each point one of k labels on arrival, with cost $O(k^5 \cdot 3^k \cdot B)$.

- not recluster or use more centers
- o First cluster-based algorithm
- have bounded worst-case guarantees

Main Result: There is a (deterministic, poly-time) online algo that, given budget B,

o First algorithm with bounded competitive ratio that does

irrevocably gives each point one of k labels on arrival, with cost $O(k^5 \cdot 3^k \cdot B)$.

- not recluster or use more centers
- o First cluster-based algorithm
- have bounded worst-case guarantees

Main Result: There is a (deterministic, poly-time) online algo that, given budget B,

o First algorithm with bounded competitive ratio that does

irrevocably gives each point one of k labels on arrival, with cost $O(k^5 \cdot 3^k \cdot B)$.

- not recluster or use more centers
- o First cluster-based algorithm
- have bounded worst-case guarantees
- Open q: find optimal dependence on k

Main Result: There is a (deterministic, poly-time) online algo that, given budget B,

o First algorithm with bounded competitive ratio that does

irrevocably gives each point one of k labels on arrival, with cost $O(k^5 \cdot 3^k \cdot B)$.

- not recluster or use more centers
- o First cluster-based algorithm
- have bounded worst-case guarantees
- Open q: find optimal dependence on k

Main Result: There is a (deterministic, poly-time) online algo that, given budget B,

o First algorithm with bounded competitive ratio that does

Thank You

hanewman@andrew.cmu.edu