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Motivation: develop stochastic 
optimization algorithms that are  
robust to imperfect predicted 
distributions 

Today:  
preemptively schedule stochastic jobs on single machine  

to minimize total completion time (no release dates)
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Upshot: new stochastic scheduling model robust to errors in predicted distributions

✓Unknown  ?α
✓Other problems where (something like) Gittins index is optimal? 


