Robust Gittins for Stochastic Scheduling

Heather Newman (Carnegie Mellon) SIGMETRICS 2025

Joint work with: Ben Moseley (Carnegie Mellon), Kirk Pruhs (U. of Pittsburgh), and Rudy Zhou (Microsoft)

Many stochastic optimization policies assume perfectly accurate distributions

Many stochastic optimization policies assume perfectly accurate distributions

rich information

Many stochastic optimization policies assume perfectly accurate distributions

rich information

brittle algorithms

unrealistic

Many stochastic optimization policies assume perfectly accurate distributions

rich information

brittle algorithms

unrealistic

Many stochastic optimization policies assume perfectly accurate distributions

Motivation: develop stochastic optimization algorithms that are robust to imperfect predicted distributions

unrealistic

Many stochastic optimization policies assume perfectly accurate distributions

Motivation: develop stochastic optimization algorithms that are robust to imperfect predicted distributions

Today:

preemptively schedule stochastic jobs on single machine to minimize total completion time (no release dates)

M/G/1 queue

M/G/1 queue

•Scully, Grosof, & Mitzenmacher '22: give scheduler stochastic estimate z_j of true size s_j where $(s_j, z_j) \sim (S, Z)$ and $z_j \in [\beta \cdot s_j, \alpha \cdot s_j] \rightarrow$ compare against SRPT

M/G/1 queue

- •Scully, Grosof, & Mitzenmacher '22: give scheduler stochastic estimate z_j of true size s_j where $(s_j, z_j) \sim (S, Z)$ and $z_j \in [\beta \cdot s_j, \alpha \cdot s_j] \rightarrow$ compare against SRPT
- ·Scully & Harchol-Balter '18: consider error on job ages

M/G/1 queue

- •Scully, Grosof, & Mitzenmacher '22: give scheduler **stochastic estimate** z_j of true size s_j where $(s_j, z_j) \sim (S, Z)$ and $z_j \in [\beta \cdot s_j, \alpha \cdot s_j] \rightarrow$ compare against SRPT
- ·Scully & Harchol-Balter '18: consider error on job ages

Scheduling with predictions (non-stochastic setting)

M/G/1 queue

- •Scully, Grosof, & Mitzenmacher '22: give scheduler **stochastic estimate** z_j of true size s_j where $(s_j, z_j) \sim (S, Z)$ and $z_j \in [\beta \cdot s_j, \alpha \cdot s_j] \rightarrow$ compare against SRPT
- ·Scully & Harchol-Balter '18: consider error on job ages

Scheduling with predictions (non-stochastic setting)

•Purohit et. al. '18; Azar et. al '21, '22; Im et. al. '23

M/G/1 queue

- •Scully, Grosof, & Mitzenmacher '22: give scheduler **stochastic estimate** z_j of true size s_j where $(s_j, z_j) \sim (S, Z)$ and $z_j \in [\beta \cdot s_j, \alpha \cdot s_j] \rightarrow$ compare against SRPT
- ·Scully & Harchol-Balter '18: consider error on job ages

Scheduling with predictions (non-stochastic setting)

•Purohit et. al. '18; Azar et. al '21, '22; Im et. al. '23

Non-scheduling problems

M/G/1 queue

- •Scully, Grosof, & Mitzenmacher '22: give scheduler stochastic estimate z_j of true size s_j where $(s_j, z_j) \sim (S, Z)$ and $z_j \in [\beta \cdot s_j, \alpha \cdot s_j] \rightarrow$ compare against SRPT
- ·Scully & Harchol-Balter '18: consider error on job ages

Scheduling with predictions (non-stochastic setting)

•Purohit et. al. '18; Azar et. al '21, '22; Im et. al. '23

Non-scheduling problems

• Dütting & Kesselheim '19: Prophet inequalities

M/G/1 queue

- •Scully, Grosof, & Mitzenmacher '22: give scheduler stochastic estimate z_j of true size s_j where $(s_j, z_j) \sim (S, Z)$ and $z_j \in [\beta \cdot s_j, \alpha \cdot s_j] \rightarrow$ compare against SRPT
- ·Scully & Harchol-Balter '18: consider error on job ages

Scheduling with predictions (non-stochastic setting)

•Purohit et. al. '18; Azar et. al '21, '22; Im et. al. '23

Non-scheduling problems

- Dütting & Kesselheim '19: Prophet inequalities
- ·Banishashem et. al. '25: Pandora's box

M/G/1 queue

- •Scully, Grosof, & Mitzenmacher '22: give scheduler stochastic estimate z_j of true size s_j where $(s_j, z_j) \sim (S, Z)$ and $z_j \in [\beta \cdot s_j, \alpha \cdot s_j] \rightarrow$ compare against SRPT
- ·Scully & Harchol-Balter '18: consider error on job ages

Scheduling with predictions (non-stochastic setting)

•Purohit et. al. '18; Azar et. al '21, '22; Im et. al. '23

Non-scheduling problems

- Dütting & Kesselheim '19: Prophet inequalities
- ·Banishashem et. al. '25: Pandora's box
- •Kim & Lim '16: Multi-armed bandits

Problem Definition

Problem Definition

Problem Definition

(not necessarily identical)

Problem Definition

(not necessarily identical)

 P_1

 P_2

 \mathcal{D}_3

Problem Definition

(not necessarily identical)

 P_1

Nonanticipatory

 \mathcal{D}_2

 P_2

 \mathcal{D}_3

Problem Definition

(not necessarily identical)

9

 P_1

- Nonanticipatory
- Preemption allowed

 P_2

Problem Definition

(not necessarily identical)

 P_1

- Nonanticipatory
- Preemption allowed
- No release dates

 P_2

Problem Definition

(not necessarily identical)

 P_1

 P_2

- Preemption allowed
- No release dates
- ·Single machine

Problem Definition

(not necessarily identical)

 P_1

 P_2

- Preemption allowed
- No release dates
- ·Single machine

Problem Definition

(not necessarily identical)

 P_1

 P_2

- Preemption allowed
- No release dates
- ·Single machine

Problem Definition

(not necessarily identical)

 P_1

 P_2

 P_3

Nonanticipatory

- Preemption allowed
- No release dates
- ·Single machine

Goal: nonanticipatory policy minimizing

$$\mathbb{E}\left[\sum_{j=1}^{n}C_{j}\right]$$

(not necessarily

identical)

Problem Definition

- Nonanticipatory
- Preemption allowed
- No release dates
- ·Single machine

Goal: nonanticipatory policy minimizing

$$\mathbb{E} \left| \sum_{j=1}^{n} C_{j} \right|$$

Optimal Policies

(not necessarily identical)

F

Goal: nonanticipatory policy minimizing $\mathbb{E}\left[\sum_{i=1}^{n} C_{i}\right]$

1

 \mathfrak{D}_3

Optimal Policies

(not necessarily identical)

$$P_1$$

Goal: nonanticipatory policy minimizing

$$\mathbb{E}\left[\sum_{j=1}^n C_j\right]$$

$$P_2$$

Deterministic: SPT

Optimal Policies

(not necessarily identical)

Goal: nonanticipatory policy minimizing

Deterministic: SPT

· Decreasing hazard rates: SERPT

Optimal Policies

(not necessarily identical)

9

 P_1

Goal: nonanticipatory policy minimizing $\mathbb{E}\left[\sum_{i=1}^{n}C_{i}\right]$

 P_2

- Deterministic: SPT
- · Decreasing hazard rates: SERPT
- ·Increasing hazard rates: SEPT

nt Optimal Policies

(not necessarily identical)

Goal: nonanticipatory policy minimizing

$$\mathbb{E}\left[\sum_{j=1}^n C_j\right]$$

- Deterministic: SPT
- · Decreasing hazard rates: SERPT
- ·Increasing hazard rates: SEPT
- •In general: Gittins Index Priority Policy

nt Optimal Policies

(not necessarily identical)

Goal: nonanticipatory policy minimizing

$$\mathbb{E}\left[\sum_{j=1}^n C_j\right]$$

- Deterministic: SPT
- · Decreasing hazard rates: SERPT
- ·Increasing hazard rates: SEPT
- •In general: Gittins Index Priority Policy

independent

(not necessarily

identical)

Optimal Policies

$$\mathbb{E}\left[\sum_{j=1}^n C_j\right]$$

- Deterministic: SPT
- · Decreasing hazard rates: SERPT
- ·Increasing hazard rates: SEPT
- •In general: Gittins Index Priority Policy

independent

(not necessarily

identical)

Optimal Policies

$$\mathbb{E}\left[\sum_{j=1}^n C_j\right]$$

- Deterministic: SPT
- · Decreasing hazard rates: SERPT
- ·Increasing hazard rates: SEPT
- •In general: Gittins Index Priority Policy

$$\mathbb{E}\left[\sum_{j=1}^n C_j\right]$$

- Deterministic: SPT
- ·Decreasing hazard rates: SERPT
- ·Increasing hazard rates: SEPT
- •In general: Gittins Index Priority Policy

Robust: SEPT

$$\mathbb{E}\left[\sum_{j=1}^n C_j\right]$$

- Deterministic: SPT
- ·Decreasing hazard rates: SERPT
- ·Increasing hazard rates: SEPT
- ·In general: Gittins Index Priority Policy

Robust: SEPT

Why: cost expressed in terms of

unconditional expected values

$$\mathbb{E}\left[\sum_{j=1}^{n}C_{j}\right]$$

- Deterministic: SPT
- · Decreasing hazard rates: SERPT
- ·Increasing hazard rates: SEPT
- •In general: Gittins Index Priority Policy

Robust: SEPT

Why: cost expressed in terms of

unconditional expected values

$$\sum_{j=1}^{n} (n-j) \cdot \mathbb{E}[P_j]$$

$$\mathbb{E}\left[\sum_{j=1}^n C_j\right]$$

- Deterministic: SPT
- ·Decreasing hazard rates: SERPT
- Increasing hazard rates: SEPT
- •In general: Gittins Index Priority Policy

Robust: SEPT

Why: cost expressed in terms of unconditional expected values

$$\sum_{j=1}^{n} (n-j) \cdot \mathbb{E}[P_j]$$

Not Robust: Gittins

$$\mathbb{E}\left[\sum_{j=1}^{n} C_{j}\right]$$

- Deterministic: SPT
- ·Decreasing hazard rates: SERPT
- ·Increasing hazard rates: SEPT
- •In general: Gittins Index Priority Policy

Robust: SEPT

Why: cost expressed in terms of unconditional expected values

$$\sum_{j=1}^{n} (n-j) \cdot \mathbb{E}[P_j]$$

Not Robust: Gittins

Why: policy based on conditional expectations and probabilities that are highly sensitive to error

$$\mathbb{E}\left[\sum_{j=1}^n C_j\right]$$

- Deterministic: SPT
- ·Decreasing hazard rates: SERPT
- ·Increasing hazard rates: SEPT
- •In general: Gittins Index Priority Policy

Robust: SEPT

Why: cost expressed in terms of unconditional expected values

$$\sum_{j=1}^{n} (n-j) \cdot \mathbb{E}[P_j]$$

Not Robust: Gittins

finite support

Robust: SEPT

Why: cost expressed in terms of unconditional expected values

$$\sum_{j=1}^{n} (n-j) \cdot \mathbb{E}[P_j]$$

Not Robust: Gittins

finite support

Robust: SEPT

Why: cost expressed in terms of unconditional expected values

$$\sum_{j=1}^{n} (n-j) \cdot \mathbb{E}[P_j]$$

Not Robust: Gittins

Why: policy based on conditional expectations and probabilities that are highly sensitive to error

maximum support length

finite support

Robust: SEPT

Why: cost expressed in terms of unconditional expected values

$$\sum_{j=1}^{n} (n-j) \cdot \mathbb{E}[P_j]$$

Not Robust: Gittins

finite support

Robust: SEPT

Why: cost expressed in terms of unconditional expected values

$$\sum_{j=1}^{n} (n-j) \cdot \mathbb{E}[P_j]$$

Not Robust: Gittins

finite support

Robust: SEPT

Why: cost expressed in terms of unconditional expected values

$$\sum_{j=1}^{n} (n-j) \cdot \mathbb{E}[P_j]$$

Not Robust: Gittins

finite support

Robust: SEPT

Why: cost expressed in terms of unconditional expected values

$$\sum_{j=1}^{n} (n-j) \cdot \mathbb{E}[P_j]$$

Not Robust: Gittins

finite support

Robust: SEPT

Why: cost expressed in terms of unconditional expected values

$$\sum_{j=1}^{n} (n-j) \cdot \mathbb{E}[P_j]$$

Not Robust: Gittins

finite support

Robust: SEPT

Why: cost expressed in terms of unconditional expected values

$$\sum_{j=1}^{n} (n-j) \cdot \mathbb{E}[P_j]$$

Not Robust: Gittins

$$\max_{q \geq 0} \frac{\mathbb{P}(P_j - y \leq q \mid P_j > y)}{\mathbb{E}[\min\{P_j - y, q\} \mid P_j > y]}$$

finite support

Robust: SEPT

Why: cost expressed in terms of unconditional expected values

$$\sum_{j=1}^{n} (n-j) \cdot \mathbb{E}[P_j]$$

Not Robust: Gittins

Why: policy based on conditional expectations and probabilities that are highly sensitive to error

prob. of finishing in interval, given not finished now

$$\max_{q \geq 0} \frac{\mathbb{P}(P_j - y \leq q \mid P_j > y)}{\mathbb{E}[\min\{P_j - y, q\} \mid P_j > y]}$$

finite support

Robust: SEPT

Why: cost expressed in terms of unconditional expected values

$$\sum_{j=1}^{n} (n-j) \cdot \mathbb{E}[P_j]$$

Not Robust: Gittins

Why: policy based on conditional expectations and probabilities that are highly sensitive to error

prob. of finishing in interval, given not finished now

$$\max_{q \geq 0} \frac{\mathbb{P}(P_j - y \leq q \mid P_j > y)}{\mathbb{E}[\min\{P_j - y, q\} \mid P_j > y]}$$

prob. of finishing in interval, given not finished now

$$\max_{q \geq 0} \frac{\mathbb{P}(P_j - y \leq q \mid P_j > y)}{\mathbb{E}[\min\{P_j - y, q\} \mid P_j > y]}$$

prob. of finishing in interval, given not finished now

$$\max_{q \geq 0} \frac{\mathbb{P}(P_j - y \leq q \mid P_j > y)}{\mathbb{E}[\min\{P_j - y, q\} \mid P_j > y]}$$

"Quanta" lengths AND ranks computed independently for each job $y \qquad y+q$

maximum support length

prob. of finishing in interval, given not finished now

$$\max_{q \geq 0} \frac{\mathbb{P}(P_j - y \leq q \mid P_j > y)}{\mathbb{E}[\min\{P_j - y, q\} \mid P_j > y]}$$

run in decreasing order of rank

maximum support length "Quanta" lengths AND ranks computed independently for each job y + qQuanta lengths pre-computed (i.e., not adaptive to job realizations) prob. of finishing in interval, given not finished now $\mathbb{P}(P_j - y \le q \mid P_j > y)$ $q \ge 0 \quad \mathbb{E}[\min\{P_j - y, q\} \mid P_j > y]$

Theorem. GIPP has arbitrarily poor performance even when the true distributions

$$\mathcal{I}^* = \{\mathcal{D}_j^*\}_{j=1}^n$$
 are arbitrarily "close" to the predicted distributions $\hat{\mathcal{I}} = \{\hat{\mathcal{D}}_j\}_{j=1}^n$

$$\mathsf{GIPP}(\mathcal{I}^*, \hat{\mathcal{I}}) = \Omega(n) \cdot \mathsf{GIPP}(\mathcal{I}^*, \mathcal{I}^*) = \mathsf{OPT}(\mathcal{I}^*)^\dagger$$

Cost of Gittins on true distributions, given predicted distributions (to construct quanta, etc.)

Theorem. GIPP has arbitrarily poor performance even when the true distributions

$$\mathcal{J}^* = \{\mathcal{D}_j^*\}_{j=1}^n$$
 are arbitrarily "close" to the predicted distributions $\hat{\mathcal{J}} = \{\hat{\mathcal{D}}_j\}_{j=1}^n$

$$\mathsf{GIPP}(\mathcal{I}^*, \hat{\mathcal{I}}) = \Omega(n) \cdot \mathsf{GIPP}(\mathcal{I}^*, \mathcal{I}^*) = \mathsf{OPT}(\mathcal{I}^*)^\dagger$$

Cost of Gittins on true distributions, given predicted distributions (to construct quanta, etc.)

†Restricting to instances where GIPP($\mathcal{F}^*, \hat{\mathcal{F}}$) completes all jobs of \mathcal{F}^*

Theorem. GIPP has arbitrarily poor performance even when the true distributions

$$\mathcal{I}^* = \{\mathcal{D}_j^*\}_{j=1}^n$$
 are arbitrarily "close" to the predicted distributions $\hat{\mathcal{I}} = \{\hat{\mathcal{D}}_j\}_{j=1}^n$

$$\mathsf{GIPP}(\mathcal{I}^*,\hat{\mathcal{I}}) = \Omega(n) \cdot \mathsf{GIPP}(\mathcal{I}^*,\mathcal{I}^*) = \mathsf{OPT}(\mathcal{I}^*)^\dagger$$

Cost of Gittins on true distributions, given predicted distributions (to construct quanta, etc.)

[†]Restricting to instances where GIPP($\mathcal{I}^*, \hat{\mathcal{I}}$) completes all jobs of \mathcal{I}^*

Theorem. GIPP has arbitrarily poor performance even when the true distributions

$$\mathcal{I}^* = \{\mathcal{D}_j^*\}_{j=1}^n$$
 are arbitrarily "close" to the predicted distributions $\hat{\mathcal{I}} = \{\hat{\mathcal{D}}_j\}_{j=1}^n$

$$\mathsf{GIPP}(\mathcal{I}^*, \hat{\mathcal{I}}) = \Omega(n) \cdot \mathsf{GIPP}(\mathcal{I}^*, \mathcal{I}^*) = \mathsf{OPT}(\mathcal{I}^*)^{\dagger}$$

Cost of Gittins on true distributions, given predicted distributions (to construct quanta, etc.)

[†]Restricting to instances where GIPP(\mathcal{I}^* , $\hat{\mathcal{I}}$) completes all jobs of \mathcal{I}^*

n i.i.d. distributions

 $\mathsf{GIPP}(\mathcal{I}^*, \hat{\mathcal{I}}) = \Omega(n) \cdot \mathsf{OPT}(\mathcal{I}^*)$

n i.i.d. distributions

n i.i.d. distributions

 $\mathsf{GIPP}(\mathcal{I}^*, \hat{\mathcal{I}}) = \Omega(n) \cdot \mathsf{OPT}(\mathcal{I}^*)$

 $\mathsf{GIPP}(\mathcal{I}^*, \hat{\mathcal{I}}) = \Omega(n) \cdot \mathsf{OPT}(\mathcal{I}^*)$

 $\mathsf{GIPP}(\mathcal{I}^*, \hat{\mathcal{I}}) = \Omega(n) \cdot \mathsf{OPT}(\mathcal{I}^*)$

 $\mathsf{GIPP}(\mathcal{I}^*, \hat{\mathcal{I}}) = \Omega(n) \cdot \mathsf{OPT}(\mathcal{I}^*)$

Theorem. Given an " α -close" ($\mathcal{I}^* = \{\mathcal{D}_j^*\}_{j=1}^n$, $\hat{\mathcal{I}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n$), $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

Theorem. Given an " α -close" ($\mathcal{F}^* = \{\mathcal{D}_j^*\}_{j=1}^n$, $\hat{\mathcal{F}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n$), $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

$$RG(\mathcal{I}^*,\hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*,\mathcal{I}^*) = OPT(\mathcal{I}^*)$$

Cost of Robust Gittins on true distributions \mathcal{D}_j^* , given predicted distributions \hat{D}_j a priori

Theorem. Given an " α -close" ($\mathcal{F}^* = \{\mathcal{D}_j^*\}_{j=1}^n$, $\hat{\mathcal{F}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n$), $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

 $\alpha \downarrow 1$: approach optimality

Cost of Robust Gittins on true distributions \mathcal{D}_j^* , given predicted distributions \hat{D}_j a priori

Theorem. Given an " α -close" ($\mathcal{F}^* = \{\mathcal{D}_j^*\}_{j=1}^n$, $\hat{\mathcal{F}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n$), $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

Know α

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

 $\alpha \downarrow 1$: approach optimality

Cost of Robust Gittins on true distributions \mathscr{D}_j^* , given predicted distributions \hat{D}_j a priori

Theorem. Given an " α -close" ($\mathcal{F}^* = \{\mathcal{D}_j^*\}_{j=1}^n$, $\hat{\mathcal{F}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n$), $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

Know α

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

 $\alpha \downarrow 1$: approach optimality

Cost of Robust Gittins on true distributions \mathcal{D}_j^* , given predicted distributions \hat{D}_j a priori

- Compute and order $\hat{\mathcal{F}}$ quanta
- •Stretch by factor of α

Theorem. Given an " α -close" ($\mathcal{F}^* = \{\mathcal{D}_j^*\}_{j=1}^n$, $\hat{\mathcal{F}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n$), $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

Know α

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

 $\alpha \downarrow 1$: approach optimality

Cost of Robust Gittins on true distributions \mathcal{D}_j^* , given predicted distributions \hat{D}_j a priori

- -Compute and order $\hat{\mathcal{F}}$ quanta
- •Stretch by factor of α

Theorem. Given an " α -close" ($\mathcal{I}^* = \{\mathcal{D}_j^*\}_{j=1}^n$, $\hat{\mathcal{I}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n$), $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

Know α

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

 $\alpha \downarrow 1$:
approach
optimality

Cost of Robust Gittins on true distributions \mathcal{D}_j^* , given predicted distributions \hat{D}_j a priori

- \cdot Compute and order $\hat{\mathcal{F}}$ quanta
- •Stretch by factor of α

$$\alpha = 1 + \varepsilon$$

Definition. ($\mathscr{D}, \mathscr{D}'$) are α -close ($\alpha \geq 1$) if

Definition. ($\mathscr{D}, \mathscr{D}'$) are α -close ($\alpha \geq 1$) if

$$\forall x \ge 0: \qquad \frac{1}{\alpha} \cdot \mathbb{P}_{P \sim \mathcal{D}}(P > \alpha \cdot x) \le \mathbb{P}_{P' \sim \mathcal{D}'}(P' > x) \le \alpha \cdot \mathbb{P}_{P \sim \mathcal{D}}(P > x/\alpha)$$

Definition. ($\mathscr{D}, \mathscr{D}'$) are α -close ($\alpha \geq 1$) if

$$\forall x \ge 0: \qquad \frac{1}{\alpha} \cdot \mathbb{P}_{P \sim \mathcal{D}}(P > \alpha \cdot x) \le \mathbb{P}_{P' \sim \mathcal{D}'}(P' > x) \le \alpha \cdot \mathbb{P}_{P \sim \mathcal{D}}(P > x/\alpha)$$

 $(\{\mathcal{D}_j\}_{j=1}^n, \{\mathcal{D}_j'\}_{j=1}^n)$ are α -close if every pair $(\mathcal{D}_j, \mathcal{D}_j')$ is α -close

Definition. ($\mathscr{D}, \mathscr{D}'$) are α -close ($\alpha \geq 1$) if

$$\forall x \geq 0: \qquad \frac{1}{\alpha} \cdot \mathbb{P}_{P \sim \mathcal{D}}(P > \alpha \cdot x) \leq \mathbb{P}_{P' \sim \mathcal{D}'}(P' > x) \leq \alpha \cdot \mathbb{P}_{P \sim \mathcal{D}}(P > x/\alpha)$$

 $(\{\mathcal{D}_j\}_{j=1}^n, \{\mathcal{D}_j'\}_{j=1}^n)$ are α -close if every pair $(\mathcal{D}_j, \mathcal{D}_j')$ is α -close

"multiplicative error in upper tails is small"

✓ Symmetry: can flip roles of \mathscr{D} , \mathscr{D}'

Definition. ($\mathscr{D}, \mathscr{D}'$) are α -close ($\alpha \geq 1$) if

$$\forall x \geq 0: \qquad \frac{1}{\alpha} \cdot \mathbb{P}_{P \sim \mathcal{D}}(P > \alpha \cdot x) \leq \mathbb{P}_{P' \sim \mathcal{D}'}(P' > x) \leq \alpha \cdot \mathbb{P}_{P \sim \mathcal{D}}(P > x/\alpha)$$

 $(\{\mathscr{D}_j\}_{j=1}^n, \{\mathscr{D}_j'\}_{j=1}^n)$ are α -close if every pair $(\mathscr{D}_j, \mathscr{D}_j')$ is α -close

- ✓ Symmetry: can flip roles of \mathscr{D} , \mathscr{D}'
- ✓ Monotonicity: α -close $\Longrightarrow \alpha'$ -close, $\alpha \le \alpha'$

Definition. ($\mathscr{D}, \mathscr{D}'$) are α -close ($\alpha \geq 1$) if

$$\forall x \geq 0: \qquad \frac{1}{\alpha} \cdot \mathbb{P}_{P \sim \mathcal{D}}(P > \alpha \cdot x) \leq \mathbb{P}_{P' \sim \mathcal{D}'}(P' > x) \leq \alpha \cdot \mathbb{P}_{P \sim \mathcal{D}}(P > x/\alpha)$$

 $(\{\mathcal{D}_j\}_{j=1}^n, \{\mathcal{D}_j'\}_{j=1}^n)$ are α -close if every pair $(\mathcal{D}_j, \mathcal{D}_j')$ is α -close

- ✓ Symmetry: can flip roles of \mathscr{D} , \mathscr{D}'
- ✓ Monotonicity: α -close $\Longrightarrow \alpha'$ -close, $\alpha \le \alpha'$
- ✓ Composition: "multiplicative triangle inequality"

Definition. ($\mathscr{D}, \mathscr{D}'$) are α -close ($\alpha \geq 1$) if

$$\forall x \geq 0: \qquad \frac{1}{\alpha} \cdot \mathbb{P}_{P \sim \mathcal{D}}(P > \alpha \cdot x) \leq \mathbb{P}_{P' \sim \mathcal{D}'}(P' > x) \leq \alpha \cdot \mathbb{P}_{P \sim \mathcal{D}}(P > x/\alpha)$$

 $(\{\mathcal{D}_j\}_{j=1}^n, \{\mathcal{D}_j'\}_{j=1}^n)$ are α -close if every pair $(\mathcal{D}_j, \mathcal{D}_j')$ is α -close

- ✓ Symmetry: can flip roles of \mathcal{D} , \mathcal{D}'
- ✓ Monotonicity: α -close $\Longrightarrow \alpha'$ -close, $\alpha \le \alpha'$
- ✓ Composition: "multiplicative triangle inequality"

Definition. ($\mathscr{D}, \mathscr{D}'$) are α -close ($\alpha \geq 1$) if

$$\forall x \geq 0: \qquad \frac{1}{\alpha} \cdot \mathbb{P}_{P \sim \mathcal{D}}(P > \alpha \cdot x) \leq \mathbb{P}_{P' \sim \mathcal{D}'}(P' > x) \leq \alpha \cdot \mathbb{P}_{P \sim \mathcal{D}}(P > x/\alpha)$$

 $(\{\mathcal{D}_j\}_{j=1}^n, \{\mathcal{D}_j'\}_{j=1}^n)$ are α -close if every pair $(\mathcal{D}_j, \mathcal{D}_j')$ is α -close

- ✓ Symmetry: can flip roles of \mathcal{D} , \mathcal{D}'
- ✓ Monotonicity: α -close $\Longrightarrow \alpha'$ -close, $\alpha \le \alpha'$
- ✓ Composition: "multiplicative triangle inequality"

...and a less immediately obvious example

...and a less immediately obvious example

not related by a combined vertical + horizontal shift

...and a less immediately obvious example

not related by a combined vertical + horizontal shift

parameter error bound → error measure bound

...and a less immediately obvious example

not related by a combined vertical + horizontal shift

parameter error bound → error measure bound

$$Exp(\lambda)$$
 and $Exp(\lambda')$ are $\frac{\lambda'}{\lambda}$ - close

Relation to Other Distances

Relation to Other Distances

Lévy distance

Relation to Other Distances

Lévy distance

$$d_L(\mathcal{D}, \mathcal{D}') = \inf\{\varepsilon \ge 0 \mid F'(x - \varepsilon) - \varepsilon \le F(x) \le F'(x + \varepsilon) + \varepsilon \quad \forall x \in \mathbb{R}\}$$

Theorem. Given an α -close $(\mathcal{I}^* = \{\mathcal{D}_j^*\}_{j=1}^n, \hat{\mathcal{I}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n)$, $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

Theorem. Given an α -close $(\mathcal{F}^* = \{\mathcal{D}_j^*\}_{j=1}^n, \hat{\mathcal{F}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n)$, $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^3 \cdot GIPP(\hat{\mathcal{I}}, \hat{\mathcal{I}}) \leq \alpha^3 \cdot RG(\hat{\mathcal{I}}, \mathcal{I}^*) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*)$$

Theorem. Given an α -close $(\mathcal{I}^* = \{\mathcal{D}_j^*\}_{j=1}^n, \hat{\mathcal{I}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n)$, $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \stackrel{!}{\leq} \alpha^3 \cdot GIPP(\hat{\mathcal{I}}, \hat{\mathcal{I}}) \leq \alpha^3 \cdot RG(\hat{\mathcal{I}}, \mathcal{I}^*) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*)$$

Theorem. Given an α -close $(\mathcal{I}^* = \{\mathcal{D}_j^*\}_{j=1}^n, \hat{\mathcal{I}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n)$, $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \stackrel{!}{\leq} \alpha^3 \cdot GIPP(\hat{\mathcal{I}}, \hat{\mathcal{I}}) \leq \alpha^3 \cdot RG(\hat{\mathcal{I}}, \mathcal{I}^*) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*)$$

$$OPT(\hat{\mathcal{I}})$$

Theorem. Given an α -close $(\mathcal{I}^* = \{\mathcal{D}_j^*\}_{j=1}^n, \hat{\mathcal{I}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n)$, $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \stackrel{!}{\leq} \alpha^3 \cdot GIPP(\hat{\mathcal{I}}, \hat{\mathcal{I}}) \leq \alpha^3 \cdot RG(\hat{\mathcal{I}}, \mathcal{I}^*) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*)$$

$$OPT(\hat{\mathcal{I}})$$
by symmetry of

error measure

Theorem. Given an α -close $(\mathcal{I}^* = \{\mathcal{D}_j^*\}_{j=1}^n, \hat{\mathcal{I}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n)$, $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \stackrel{!}{\leq} \alpha^3 \cdot GIPP(\hat{\mathcal{I}}, \hat{\mathcal{I}}) \leq \alpha^3 \cdot RG(\hat{\mathcal{I}}, \mathcal{I}^*) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*)$$

$$OPT(\hat{\mathcal{I}})$$
by symmetry of error measure.

Theorem. Given an α -close $(\mathcal{F}^* = \{\mathcal{D}_j^*\}_{j=1}^n, \hat{\mathcal{F}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n)$, $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

Cost of Robust Gittins on true distributions \mathcal{D}_{i}^{*} , given predicted distributions $\hat{\mathcal{D}}_{j}$ a priori

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \stackrel{!}{\leq} \alpha^3 \cdot GIPP(\hat{\mathcal{I}}, \hat{\mathcal{I}}) \leq \alpha^3 \cdot RG(\hat{\mathcal{I}}, \mathcal{I}^*) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*)$$

$$OPT(\hat{\mathcal{I}})$$
by symmetry of error measure

Note: proves $OPT(\hat{\mathcal{F}})$ and $OPT(\mathcal{F}^*)$ off by factor of at most α^3

Theorem. Given an α -close $(\mathcal{I}^* = \{\mathcal{D}_j^*\}_{j=1}^n, \hat{\mathcal{I}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n)$, $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

Theorem. Given an α -close $(\mathcal{I}^* = \{\mathcal{D}_j^*\}_{j=1}^n, \hat{\mathcal{I}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n)$, $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

Cost of Robust Gittins on true distributions \mathcal{D}_j^* , given predicted distributions $\hat{\mathcal{D}}_j$ a priori

Closed-form cost of Gittins (Megow & Vredeveld '14)

Theorem. Given an α -close $(\mathcal{F}^* = \{\mathcal{D}_j^*\}_{j=1}^n, \hat{\mathcal{F}} = \{\hat{\mathcal{D}}_j^*\}_{j=1}^n)$, $\alpha \geq 1$, pair of true and predicted distributions, there is a policy, Robust Gittins (RG), satisfying:

$$RG(\mathcal{I}^*, \hat{\mathcal{I}}) \leq \alpha^6 \cdot GIPP(\mathcal{I}^*, \mathcal{I}^*) = OPT(\mathcal{I}^*)$$

Cost of Robust Gittins on true distributions \mathcal{D}_j^* , given predicted distributions $\hat{\mathcal{D}}_j$ a priori

Closed-form cost of Gittins (Megow & Vredeveld '14)

$$GIPP(\mathcal{F}, \mathcal{F}) = \sum_{j=1}^{n} \sum_{i=1}^{n_j} \sum_{(k, q_{k,l}) \in H'(j, i)} \mathbb{E} \left[\mathbf{1}_{\{P_j > y_{j,i}\}} \cdot \mathbf{1}_{\{P_k > y_{k,l}\}} \cdot \min\{P_k - y_{k,l}, q_{k,l}\} \right]$$

Upshot: new stochastic scheduling model robust to errors in predicted distributions

Upshot: new stochastic scheduling model robust to errors in predicted distributions

✓ Unknown α ?

Upshot: new stochastic scheduling model robust to errors in predicted distributions

- ✓ Unknown α ?
- ✓ Other problems where (something like) Gittins index is optimal?